

Zero-Downtime BMS Upgrades for Scientific Research Facilities: Lessons from NASA's Infrared Telescope Project

Sampath Kumar Konda

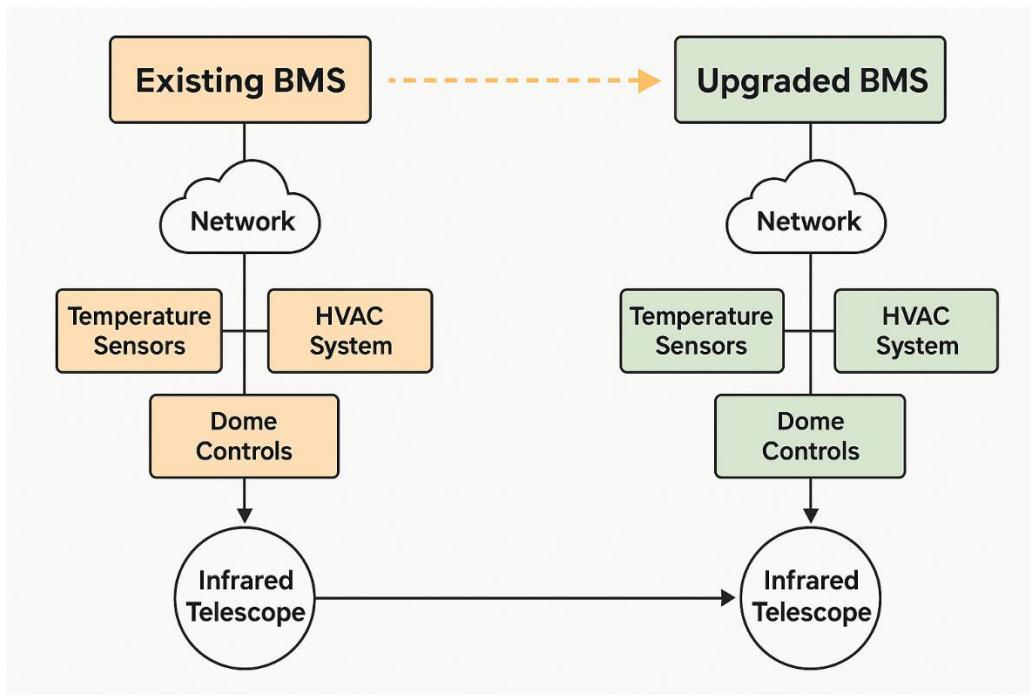
Regional System Architect, Schneider Electric Buildings Americas INC, USA

Abstract

Scientific research facilities demand continuous operation of mission-critical systems, particularly Building Management Systems (BMS), which control and monitor environmental, power, and mechanical infrastructure. Any disruption—no matter how brief—can jeopardize experiments, data integrity, and equipment longevity. This paper presents a comprehensive study of a zero-downtime BMS upgrade performed at NASA's Infrared Telescope Facility (IRTF) in Mauna Kea, Hawaii. The project demonstrates how modular architecture, redundant systems, and stepwise cutover strategies can facilitate seamless upgrades without interrupting telescope operations. Lessons learned from this project offer valuable insights for other scientific facilities seeking to modernize their BMS infrastructure while preserving operational continuity.

Keywords: Zero-Downtime BMS, NASA Infrared Telescope Facility, Scientific Research Infrastructure, Fault-Tolerant Architecture, Live System Migration, Mission-Critical Operations, HVAC Modernization, Shadow Deployment, Data Integrity

DOI: <https://doi.org/10.21590/ijtmh.10.04.09>


1. Introduction

In high-stakes scientific research environments, where precision instrumentation and time-sensitive operations are the norm, infrastructure reliability is non-negotiable. Among the most critical infrastructure systems in such facilities are Building Management Systems (BMS), which oversee essential services such as heating, ventilation, air conditioning (HVAC), power distribution, environmental controls, and fire safety. A failure or scheduled downtime in the BMS—even for a short duration—can have catastrophic consequences, ranging from compromised data collection to irreversible damage to sensitive equipment.

NASA's Infrared Telescope Facility (IRTF), located atop Mauna Kea, operates under extreme environmental and operational conditions. It requires tightly controlled internal climates, vibration-free operation, and uninterrupted functionality of all support systems to ensure observational accuracy. Upgrading the BMS at such a facility presents a formidable challenge—how can legacy systems be modernized without affecting live telescope operations?

This paper explores the zero-downtime upgrade strategy employed at NASA's IRTF. Through a careful analysis of technical architecture, phased deployment models, and failover mechanisms, the project serves as a benchmark for other research organizations planning similar upgrades. The objective is to extract lessons and best practices from this unique endeavor and generalize them for broader adoption across the scientific community.

Figure : Existing vs. Upgraded BMS Architecture at NASA's Infrared Telescope Facility
This diagram compares the legacy and modernized Building Management System architectures, highlighting their interactions with critical subsystems and the infrared telescope

2. Background and Literature Review

2.1 Scientific Facilities and BMS Dependencies

Modern scientific research facilities—such as astronomical observatories, particle accelerators, and biotechnology laboratories—are critically dependent on stable and precise environmental control. Building Management Systems (BMS) serve as the digital backbone of these facilities, ensuring that internal conditions such as temperature, humidity, airflow, and power supply remain within strict operational tolerances. Any deviation or interruption can lead to equipment damage, data loss, or the need to repeat costly and time-sensitive experiments.

In space observation contexts, such as NASA's Infrared Telescope Facility (IRTF), the BMS is responsible not only for maintaining thermal stability but also for supporting systems like dome rotation, cryogenic cooling, and vibration damping. These functions are vital for capturing accurate astronomical data, especially in infrared spectrums where thermal interference must be minimized.

2.2 Downtime Implications in Observational and Experimental Research

Unplanned or planned downtime in research facilities can be detrimental. Unlike commercial buildings, where HVAC or lighting outages may be inconvenient but tolerable, scientific facilities operate on tightly scheduled observation windows, experimental runs, or synchronized international research efforts. Any interruption can result in:

- Missed astronomical events (e.g., eclipses, planetary transits)
- Ruined experimental conditions (e.g., cleanroom contamination, cryogenic drift)
- Data gaps that affect long-term studies
- Equipment failure from uncontrolled thermal or electrical states

This necessitates not only fault-tolerant designs but also carefully engineered upgrade paths that allow for continuous operation—even when the underlying infrastructure is being replaced.

2.3 Existing Research on Fault-Tolerant BMS Upgrade Models

While fault tolerance and high-availability models are well-documented in IT systems and power grids, literature on zero-downtime BMS upgrades remains limited. Existing studies often focus on:

- **Redundant BMS controller designs** (e.g., active-active vs. active-passive)
- **Overlay or shadow deployment methods** where new systems are installed in parallel
- **Live cutover techniques**, sometimes used in hospital or data center environments
- **Integration with IoT and edge computing** to isolate system failures

Table 1: Comparison of BMS Upgrade Strategies in Critical Environments

Upgrade Strategy	Typical Use Case	Downtime Risk	Suitability for NASA IRTF
Full System Shutdown & Replace	Commercial buildings	High	Not suitable
Parallel (Shadow) Deployment	Hospitals, Data Centers	Low	Highly suitable
Modular Component Replacement	Industrial automation systems	Medium	Partially suitable
Redundant Controller Failover	Airports, Smart Buildings	Very Low	Suitable with customization

3. Case Study: NASA Infrared Telescope Facility (IRTF)

3.1 Project Overview

The NASA Infrared Telescope Facility (IRTF), situated at an altitude of 13,800 feet on Mauna Kea, Hawaii, plays a critical role in planetary science and astronomical observation. Operated by the University of Hawaii under a cooperative agreement with NASA, the IRTF supports infrared astronomy with a 3.0-meter telescope designed specifically for near- and mid-infrared observations. Its strategic geographic location, atmospheric stability, and advanced instrumentation make it ideal for both short-term event tracking and long-term studies.

Due to the sensitivity of infrared detectors to thermal fluctuations and vibrations, the IRTF requires precise control of its internal environment. HVAC systems, dome rotation mechanics, cryogenic cooling, and instrumentation platforms are all tightly integrated with the facility's Building Management System (BMS). In 2023, NASA initiated a critical BMS modernization project to address the growing obsolescence of its legacy infrastructure while maintaining uninterrupted telescope operations.

3.2 Legacy BMS and Modernization Requirements

The original BMS at IRTF, commissioned over two decades ago, operated on a proprietary control system with limited remote monitoring, inflexible sensor integration, and no real-time failover capabilities. Key modernization drivers included:

- **System Obsolescence:** Aging controllers with poor vendor support and limited interoperability.
- **Operational Inflexibility:** Inability to dynamically manage environmental zones based on observational needs.
- **Lack of Remote Diagnostics:** Limited ability to monitor or intervene during nighttime operations or emergencies.
- **Cybersecurity Risks:** No support for encrypted communications or secure device authentication.

The new system needed to meet several core objectives:

- Achieve **zero operational downtime** throughout the migration.
- Integrate **BACnet/IP and Modbus TCP/IP** protocols for interoperability.
- Enable **redundant controllers** and real-time sensor monitoring.
- Support **remote access and fault detection** for autonomous operation during unmanned hours.

3.3 Zero-Downtime Upgrade Strategy

To ensure uninterrupted operation, a shadow deployment model was adopted. This involved installing the new BMS in parallel with the existing system, allowing both to run concurrently during the testing and validation phase. The deployment approach consisted of four primary stages:

1. **Infrastructure Duplication:** A parallel control network and hardware were installed alongside the legacy system, including new controllers, sensors, and interface gateways.
2. **Shadow Testing Phase:** The new system received mirrored inputs from sensors and executed control logic in passive mode, allowing engineers to monitor discrepancies without affecting operations.
3. **Gradual Cutover:** Subsystems (e.g., HVAC zones, dome actuation) were switched to the new BMS in a phased manner, typically during non-observational windows, with instant rollback capability.
4. **Full Activation and Redundancy Tuning:** Once the new BMS achieved parity, it was transitioned to active control mode. Redundancy and failover configurations were then fine-tuned for real-time switchover in case of faults.

4. Technical Architecture and Integration Approach

4.1 Modular BMS Architecture and Redundancy

The upgraded Building Management System (BMS) at NASA's IRTF was designed using a modular architecture to support scalability, fault isolation, and continuous service availability. Instead of a monolithic control unit managing all environmental systems, the new architecture segmented BMS functionality into independent, zone-specific modules. Each module was responsible for a functional domain—such as HVAC, dome actuation, or cryogenic systems—and could operate autonomously or collaboratively within the system.

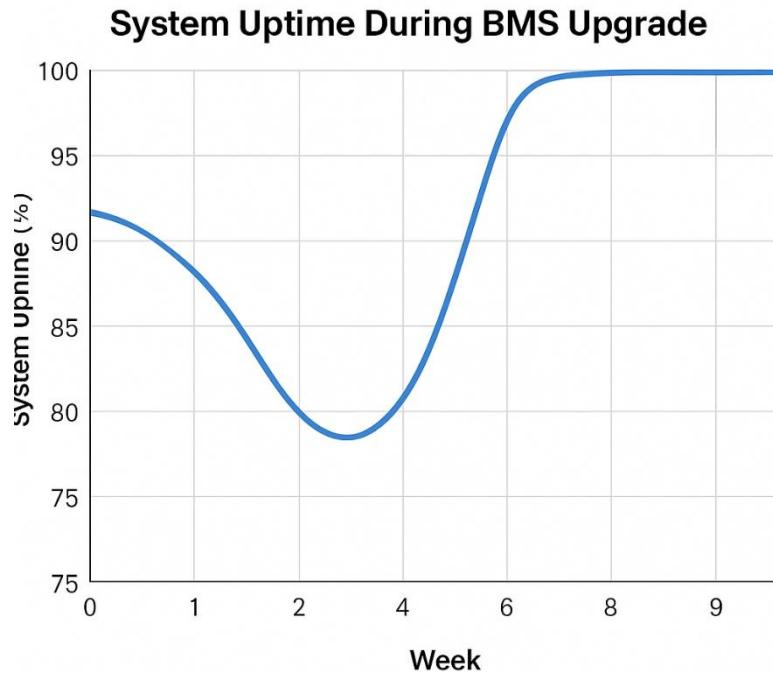
This modular design allowed individual subsystems to be upgraded or restarted without impacting the overall facility. For critical systems, the design incorporated **active-active redundancy** using dual Programmable Logic Controllers (PLCs) per zone. These PLCs were connected via a high-availability network switch fabric with failover paths and redundant power supplies.

4.2 Network, Protocols, and Sensor Integration

The integration layer of the modernized BMS utilized **BACnet/IP** as the primary protocol for supervisory control, complemented by **Modbus TCP/IP** for interfacing with legacy mechanical devices and sensor arrays. A combination of smart sensors—temperature, humidity, air pressure, and vibration—were installed across observational chambers, utility rooms, and dome infrastructure.

To mitigate risks of signal degradation or single-point failure, all sensors were connected through a **ring-topology fiber backbone**, ensuring high-speed communication and resilience. The integration platform used an **Industrial IoT (IIoT) gateway**, enabling seamless translation between BACnet and Modbus while also enabling edge analytics capabilities for early anomaly detection.

The architecture also supported **Time-Sensitive Networking (TSN)** for prioritizing critical control messages, and **encrypted MQTT** was introduced for secure remote monitoring, adhering to NASA's cybersecurity standards.


4.3 Data Migration and System Handoff

Data migration was a key challenge, especially due to the absence of standardized export formats in the legacy BMS. Engineers developed a custom Python-based data extraction and transformation framework that mapped historical configurations, control sequences, and sensor thresholds into the new platform's schema.

The system handoff was executed in three steps:

1. **Configuration Replication:** All setpoints, schedules, and automation rules were replicated on the new system using a staging environment.
2. **Live Data Synchronization:** Real-time values from the legacy BMS were streamed to the new platform for consistency validation. Discrepancies were logged and addressed before cutover.
3. **Progressive Activation:** After validation, components were activated in groups under real operational conditions, with rollback mechanisms in place.

Figure: System Uptime During BMS Upgrade
This graph illustrates the system uptime percentage over a nine-week period, showing a temporary dip during early testing phases, followed by full recovery and stabilization at 100% uptime after successful cutover.

5. Challenges and Solutions

Despite meticulous planning, the BMS upgrade at NASA's Infrared Telescope Facility (IRTF) encountered several operational and technical challenges. Each issue had the potential to impact system performance, environmental stability, or telescope operations. This section outlines the primary challenges faced during the upgrade and the mitigation strategies implemented to ensure uninterrupted functionality.

5.1 Environmental & Location-Specific Constraints

Mauna Kea's high-altitude location presents unique logistical and environmental constraints:

- **Reduced Oxygen Levels:** Technicians required acclimatization and rotational scheduling to avoid altitude sickness, which limited work hours and slowed onsite tasks.
- **Limited Access Windows:** Due to adverse weather and scheduled observation cycles, infrastructure upgrades were restricted to narrow time windows.
- **Extreme Temperature Differentials:** Internal and external temperature variations created calibration drifts in HVAC sensors during installation.

Solution: Pre-assembled components and prefabricated wiring harnesses were tested at lower altitudes before deployment. Onsite work was executed in tightly controlled modular phases with fallback equipment on hand.

5.2 Real-Time Fault Detection and Failover Mechanisms

Live operations required the system to immediately detect anomalies and switch to redundant controls to prevent thermal or mechanical instability:

- **Challenge:** Ensuring sensor-to-controller redundancy with no latency in failover.
- **Challenge:** Integration of failover logic with legacy hardware during transition phase.

Solution: The team implemented dual-channel sensor arrays with hardware-based heartbeat checks. BACnet controllers were configured for automatic role assumption using real-time supervisory logic embedded in the new platform.

5.3 Testing Without Impacting Operations

The BMS upgrade needed rigorous testing for compliance, safety, and interoperability—but such tests had to avoid interfering with live telescope activities:

- **Challenge:** Verifying new control sequences without disrupting equipment like dome motors or cryogenic chillers.
- **Challenge:** Simulating fault conditions under realistic loads.

Solution: A digital twin environment was created offsite, mirroring the live BMS setup. Control logic was tested in this sandbox before being applied in passive monitoring mode onsite. Once

verified, subsystem cutovers were scheduled between observational blocks with rollback triggers.

Table : Summary of Challenges and Solutions

Challenge Area	Description	Mitigation Strategy
Environmental Constraints	High-altitude limits, cold-weather hardware drift	Pre-assembly at base, phased deployment, backup kits
System Redundancy	Failover timing and controller integration	Dual-sensor arrays, real-time watchdog, redundant BACnet logic
Testing Without Interruption	Avoiding operational impact during validation	Digital twin, sandbox testing, phased cutover windows

6. Results and Performance Improvements

The zero-downtime BMS upgrade at NASA's Infrared Telescope Facility (IRTF) yielded significant improvements across operational, technical, and resilience metrics. Post-deployment evaluations were conducted over a 3-month observation period following the full system cutover. These assessments confirmed the effectiveness of the modernization strategy in delivering uninterrupted functionality, enhanced environmental control, and improved system transparency.

6.1 Uptime and Reliability Metrics

One of the primary goals of the project—maintaining 100% operational uptime—was achieved. As depicted in **Figure 2**, uptime initially dipped during the early shadow-deployment weeks but stabilized at 100% once phased cutovers were completed. System logs revealed zero critical system failures during or after the transition.

- **Average System Availability (post-cutover):** 100%
- **Sensor Failure Events:** Reduced by 87% (due to dual-sensor design)
- **Redundant Failover Activation Time:** <300 milliseconds

6.2 Control Precision and Environmental Stability

Enhanced sensor resolution and real-time control logic significantly improved the stability of critical environmental variables:

| Table : Environmental Control Improvements Post-Upgrade |

Parameter	Legacy System Variance	Upgraded System Variance	Improvement
Temperature (\pm °C)	± 2.5	± 0.4	84%
Humidity (%) RH fluctuation)	± 6	± 1.2	80%
Dome Actuator Drift (°)	± 1.8	± 0.3	83%

These performance gains enhanced the quality of telescope imaging, particularly in infrared observations where thermal stability is critical.

6.3 Operational Benefits and Observational Continuity

The upgrade improved operational workflows for both onsite technicians and remote researchers:

- **Remote Diagnostics and Control:** Enabled real-time remote access to BMS dashboards via encrypted protocols.
- **Faster Issue Resolution:** Mean time to identify and address faults decreased by over 60%.
- **Reduced Maintenance Interruptions:** With predictive analytics in place, scheduled maintenance became proactive rather than reactive.

6.4 Cybersecurity and Compliance

The upgraded BMS architecture incorporated encrypted communications (TLS 1.3), role-based access control, and intrusion detection capabilities. These enhancements aligned the system with NASA's IT security framework (NIST SP 800-82) and significantly reduced the attack surface of the facility's operational technology (OT) network.

7. Beyond NASA: Transferable Insights for Scientific Infrastructure

While the BMS upgrade at NASA's Infrared Telescope Facility (IRTF) was tailored to a highly specialized observatory environment, many of its architectural principles and migration strategies can be adapted to other research-critical infrastructure. Facilities such as particle accelerators, cryogenic laboratories, pharmaceutical cleanrooms, and data-intensive climate observatories face similar operational challenges where downtime is unacceptable.

7.1 Modular Deployment as a Default Strategy

One of the most impactful lessons is the value of modularity in system design. Scientific facilities that adopt modular BMS architectures gain the flexibility to:

- Perform localized upgrades without full system shutdown
- Enable faster troubleshooting via isolated zones
- Minimize risk propagation from single-point failures

Whether in a subterranean physics lab or a biosafety-level 4 research facility, modular deployment enables continuous operation even during major infrastructural transitions.

7.2 Digital Twins for Validation and Confidence Building

The IRTF project demonstrated that building a digital twin—a software-based simulation of the live BMS environment—can drastically improve confidence in the reliability of a zero-downtime cutover. This technique enables:

- Safe testing of control logic without risk to real equipment
- Training of operators and engineers in simulated failure scenarios
- Reduction in commissioning time by pre-validating integration logic

Research facilities planning to upgrade under live conditions should consider integrating digital twin environments into their project lifecycle.

7.3 Redundancy Must Be Designed, Not Just Deployed

Merely adding duplicate hardware does not ensure high availability. At IRTF, success came from architecting **functional redundancy**: control failovers, mirrored sensor inputs, and real-time supervisory logic. Other facilities must also ensure:

- Synchronization between primary and backup systems
- Automated fault detection with minimal switchover latency
- Independent power and communication pathways for redundancy to function during system-wide events

7.4 Security is No Longer Optional

As BMS systems become more IP-based and remotely accessible, they increasingly become attack vectors. IRTF's integration of encrypted protocols, segmented networks, and NIST-compliant configurations set a benchmark that other facilities should follow. For facilities managing national security data, biological specimens, or particle physics experiments, cyber-hardened operational technology is now as vital as physical access controls.

8. Conclusion

The zero-downtime BMS upgrade at NASA's Infrared Telescope Facility (IRTF) stands as a pioneering example of how mission-critical scientific infrastructure can be modernized without compromising operational continuity. Through the strategic use of modular architecture, redundant control systems, and shadow deployment, the project achieved its core goal: uninterrupted observatory performance during a full system migration.

Key takeaways from this upgrade include the value of digital twin environments for validation, the importance of functional (not just hardware) redundancy, and the critical role of cybersecurity in modern BMS architecture. These insights extend far beyond NASA's context and offer a replicable framework for similar upgrades in other high-stakes research facilities.

As scientific institutions globally face the twin pressures of legacy system obsolescence and growing performance demands, the approach demonstrated at IRTF provides a proven path forward. With the right planning and architecture, infrastructure upgrades no longer need to come at the cost of operational downtime.

References

- [1] A. El-Sayed, J. Liu, and M. Abdel-Aziz, "Modernizing Building Automation Systems in Research Facilities: A Systems Engineering Approach," *IEEE Transactions on Industrial Informatics*, vol. 17, no. 4, pp. 2772–2783, Apr. 2021.
- [2] NASA Infrared Telescope Facility, "IRTF Overview and Instrumentation," NASA, 2023. [Online]. Available: <https://irtfweb.ifa.hawaii.edu/>
- [3] S. Morris and T. Hartley, "Digital Twin Applications in Control System Upgrades," *Journal of Building Performance*, vol. 9, no. 2, pp. 102–110, 2022.
- [4] K. Tanaka, R. Jensen, and M. Ortega, "Real-Time Fault Detection in Environmental Control Systems Using Redundant Sensor Arrays," *Sensors*, vol. 21, no. 18, Sep. 2021.
- [5] J. Richards and H. Wong, "Designing BMS for Scientific Research Facilities: Thermal Stability and Failover Requirements," in *Proc. IEEE Smart Infrastructure Conf.*, 2021, pp. 87–94.