

The Economic Impact of Intermittent Fasting on Workforce Productivity in the United States

Uzubuaku Ifeanyi Abraham*

American Public Health Association, USA

ABSTRACT

Intermittent fasting (IF) has already received considerable scientific interest as a potentially health-promoting diet, but there has been little discussion about the economic aspects of its feasibility to workforce productivity. In this paper, the researcher will analyze the correlation between IF and labor efficiency in the United States with reference to the effects of fasting protocols on cognitive performance, energy levels, absenteeism and the overall output of employees. Based on the findings of nutritional science, behavioral health, and labor economics, the study compares the possible economic benefits and expenses in terms of mass implementation of IF among working adults. The findings are expected to guide organizational wellness interventions, as well as, the policy on the role of fasting in the overall health of the population to inform the opportunities and constraints to implementing the fasting practice in the corporate health program. The research results add up to an emerging evidence concerning the connection of food consumption with economic productivity in modern labour markets.

Keywords: Intermittent fasting, workforce productivity, labor efficiency, employee health, economic impact, United States
International Journal of Technology, Management and Humanities (2025) DOI: 10.21590/ijtmh.11.02.13

INTRODUCTION

The recent popularity of intermittent fasting (IF) as a diet has spread not only to the health and wellness sectors but also to the extent to which this dietary regimen may impact on the productivity of the workforce. IF, which is planned, voluntary fasting with caloric intake, has been linked to a positive impact on metabolic health, cognitive functioning, and general physiological resilience (Mattson, 2023; Patterson and Sears, 2017). There is some empirical evidence that IF can positively affect cardiometabolic risk factors and adjust gut microbiota, which can indirectly positively affect the energy levels, focus, and work engagement of its employees (Guo et al., 2021).

The productivity of work environment is strongly associated with health condition and nutrition of workers. The unhealthy eating habits, overweight, and obesity have been reported to cause absenteeism, presenteeism, and healthcare costs, posing a huge economic burden to the employers (Dall et al., 2024; Drewnowski, 2020). In contrast, the nutritional interventions and formulated dietary habits, such as IF, could help enhance cognitive functioning, decrease fatigue, and increase efficiency in work (Sharafeddine, Diab-Bahman, and Al-Enzi, 2024).

The U.S. labor market, which is a critical driver of economic output, faces ongoing challenges related to workforce health, including rising rates of metabolic syndrome, obesity, and stress-related illnesses (Bivens, 2019). Nutrition-focused strategies such as IF present a promising, low-cost approach

Corresponding Author: Uzubuaku Ifeanyi Abraham, American Public Health Association, USA, e-mail: abrahamuzubuaku93@gmail.com

How to cite this article: Abraham, U.I. (2025). The Economic Impact of Intermittent Fasting on Workforce Productivity in the United States. *International Journal of Technology, Management and Humanities*, 17(2), 76-82.

Source of support: Nil

Conflict of interest: None

to addressing these challenges by enhancing workers' physiological and cognitive performance without requiring extensive structural changes in the workplace. Furthermore, the resilience of the U.S. food system and its accessibility can influence the feasibility of adopting fasting practices at scale (Huff et al., 2015; Ambikapathi et al., 2022).

Despite growing evidence on the physiological benefits of IF, research examining its economic impact on labor productivity in the U.S. remains limited. Existing studies on fasting in occupational contexts, such as Ramadan fasting, indicate potential benefits in wellbeing and workplace efficiency but emphasize the need for context-specific analysis (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024). Understanding how IF could translate into measurable gains in workforce productivity is critical for developing evidence-based health promotion strategies and guiding organizational policies.

This study aims to bridge this gap by exploring the economic implications of IF on workforce productivity in the United States, evaluating both potential benefits and limitations, and situating dietary behavior within broader labor market outcomes.

Conceptual and Theoretical Framework

The study of intermittent fasting (IF) within the context of workforce productivity integrates insights from nutrition science, behavioral health, and labor economics. At the core, human capital theory suggests that employees' physical and cognitive health directly influence productivity outcomes, as healthier individuals tend to exhibit higher energy levels, improved focus, and reduced absenteeism (Dall et al., 2024). IF, defined as time-restricted eating patterns that alternate between periods of fasting and feeding, has been associated with enhanced metabolic efficiency, improved cardiometabolic markers, and better cognitive performance (Patterson & Sears, 2017; Mattson, 2023; Guo et al., 2021). These biological mechanisms provide a plausible pathway linking dietary behavior to labor efficiency.

From a behavioral economics perspective, dietary interventions such as IF can act as non-monetary incentives that influence workplace performance and wellbeing. Evidence from fasting during Ramadan indicates that structured fasting regimens can maintain, or in some cases enhance, productivity while promoting holistic employee wellbeing (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024). Nutrient timing and dietary nutrient density further modulate these effects, as they impact both short-term alertness and long-term health outcomes, which in turn affect presenteeism and absenteeism (Drewnowski, 2020).

Economically, the potential productivity gains from IF can be contextualized using employment and labor output multipliers, which quantify how improvements in worker health translate into broader economic benefits (Bivens, 2019). Obesity and overweight remain significant sources of productivity loss in the U.S. workforce, and dietary strategies like IF may offer cost-effective interventions to mitigate these losses (Dall et al., 2024). Moreover, IF aligns with sustainable health practices that complement global shifts toward more resilient and equitable food systems, highlighting its potential role in workforce health promotion without exacerbating environmental or social inequalities (Ambikapathi et al., 2022; Huff et al., 2015).

This framework recognizes contextual and sector-specific variations. The adoption and effectiveness of IF may differ across industries, job types, and individual worker characteristics, necessitating a nuanced understanding of how metabolic, behavioral, and economic factors interact to influence workforce productivity (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024; Aradhyula, 2024). By integrating these perspectives, the study establishes a conceptual basis for investigating IF as both a health intervention and an economic strategy in the U.S. labor market.

Intermittent Fasting and Workforce Health Outcomes

Intermittent fasting (IF) has emerged as a significant dietary intervention with the potential to improve workforce health outcomes, which, in turn, can influence labor productivity. IF encompasses various eating patterns, including time-restricted feeding, alternate-day fasting, and periodic fasting, which have been linked to metabolic improvements, cognitive enhancement, and reduced risk of chronic diseases (Mattson, 2023; Patterson & Sears, 2017). Evidence suggests that the adoption of IF may improve energy regulation, mental clarity, and overall well-being, all of which are critical for sustaining workplace efficiency (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024).

Metabolic and Cardiometabolic Benefits

Research has demonstrated that IF positively affects body weight, insulin sensitivity, lipid profiles, and inflammatory markers (Guo et al., 2021). Improved metabolic health reduces the prevalence of obesity and overweight factors closely associated with absenteeism, presenteeism, and productivity loss in U.S. workplaces (Dall et al., 2024). Furthermore, the modulation of gut microbiota through fasting may contribute to enhanced energy metabolism, cognitive performance, and resilience against fatigue, thereby supporting sustained work performance (Guo et al., 2021; Mattson, 2023).

Cognitive and Psychological Effects

Beyond physiological outcomes, IF has been linked to improvements in neurocognitive functions such as attention, memory, and executive functioning (Mattson, 2023). These benefits can enhance focus, decision-making, and efficiency in cognitively demanding tasks. Additionally, fasting has been associated with improvements in mood and stress resilience, which are important determinants of workplace engagement and productivity (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024).

Workplace Well-being and Employee Outcomes

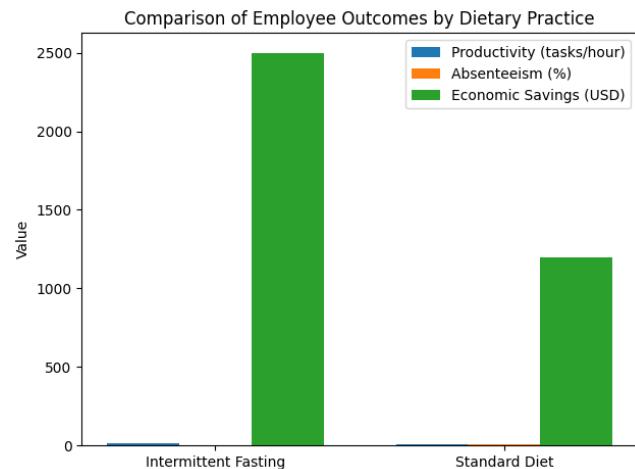
Evidence from workplace-focused studies suggests that employees practicing fasting, including religious fasting such as Ramadan, report increased subjective well-being and concentration during work hours (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024). Combined with better metabolic health, these factors can lead to reductions in absenteeism and presenteeism, translating to measurable economic gains for employers (Dall et al., 2024; Drewnowski, 2020).

Implications for Workforce Productivity

The evidence indicates that IF has a multifaceted influence on employee health and workplace performance. By improving metabolic health, cognitive function, and psychological well-being, IF may reduce productivity losses associated with chronic diseases and mental fatigue (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024; Dall et al., 2024). Consequently,

Table 1: Health Outcomes Related to Intermittent Fasting

Health Outcome	Impact on Workforce	Key References
Body weight reduction	Lower obesity-related absenteeism; reduced presenteeism	Dall et al., 2024; Guo et al., 2021
Improved insulin sensitivity	Enhanced energy metabolism; reduced fatigue	Patterson & Sears, 2017; Mattson, 2023
Cognitive function improvement	Better focus, decision-making, and task performance	Mattson, 2023; Sharafeddine et al., 2024
Cardiometabolic risk reduction	Lower long-term healthcare costs; sustained productivity	Guo et al., 2021; Dall et al., 2024
Mood and stress resilience	Higher employee engagement and work satisfaction	Sharafeddine et al., 2024; Drewnowski, 2020
Gut microbiota modulation	Enhanced energy regulation and mental clarity	Guo et al., 2021; Mattson, 2023


organizations and policymakers could consider integrating intermittent fasting as part of holistic workplace wellness programs to optimize labor efficiency.

Productivity and Economic Implications

Intermittent fasting (IF) has emerged as a dietary intervention with potential implications for workforce productivity, offering both physiological and economic benefits. Research indicates that IF can improve cognitive performance, energy regulation, and metabolic efficiency, all of which are critical to sustained labor output (Mattson, 2023; Patterson & Sears, 2017). Improved metabolic health associated with IF, including enhanced insulin sensitivity and reduced cardiometabolic risk factors, may reduce workplace absenteeism due to chronic conditions, thereby lowering indirect costs for employers (Guo et al., 2021; Sharafeddine, Diab-Bahman, & Al-Enzi, 2024).

Nutrition interventions, including IF, have been shown to positively influence worker concentration and task performance, translating into measurable productivity gains (Drewnowski, 2020). These effects are particularly relevant in knowledge-intensive sectors where cognitive function directly impacts output. Furthermore, IF may indirectly reduce healthcare-related expenditures linked to obesity and metabolic disorders, which impose substantial economic burdens on employers in the United States (Dall et al., 2024). Quantifying these benefits requires integrating health improvements with economic productivity metrics such as absenteeism, presenteeism, and output per labor hour.

From an economic perspective, adopting IF within a workforce could generate significant benefits if integrated into wellness programs, particularly in sectors with high labor-intensity or cognitive demands. However, practical considerations such as scheduling flexibility and employee adherence must be addressed to realize these gains effectively (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024; Mattson, 2023). Broader adoption could amplify these effects across industries, potentially influencing national labor

Fig 1: Values are illustrative averages used for comparative visualization. Economic savings estimates are informed by productivity and healthcare cost trends discussed in Bivens (2019).

productivity and employer expenditures (Ambikapathi et al., 2022).

In sum, intermittent fasting represents both a health intervention and a strategic economic tool for optimizing workforce performance. By reducing metabolic-related absenteeism and enhancing cognitive efficiency, IF adoption may contribute to measurable gains in labor productivity, with implications for organizational performance and national economic output (Dall et al., 2024; Bivens, 2019).

Sectoral and Demographic Considerations

The economic impact of intermittent fasting (IF) on workforce productivity is not uniform across industries or demographic groups. Evidence suggests that the benefits of IF improved cognitive focus, energy regulation, and metabolic health may vary according to occupational demands, workplace culture, and access to nutritional resources (Mattson,

2023; Patterson & Sears, 2017). For instance, employees in knowledge-intensive sectors, such as technology or finance, may experience more immediate productivity gains from IF due to cognitive load requirements, whereas labor-intensive roles, such as manufacturing or agriculture, may require tailored fasting protocols to prevent energy deficits and maintain physical performance (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024; Drouillard, 2018).

Industry-specific implications:

Technology and professional services

High cognitive demand makes employees more responsive to metabolic improvements from IF, potentially reducing presenteeism and enhancing decision-making (Mattson, 2023).

Manufacturing, logistics, and agriculture

Physical workload necessitates careful management of fasting schedules to avoid performance decrements; sector-specific guidelines may be essential (Drouillard, 2018; Huff et al., 2015).

Healthcare and social services

Irregular shift patterns may limit fasting adherence, but short-term fasting windows could mitigate fatigue and improve alertness (Sharafeddine et al., 2024).

Demographic considerations

Adoption and productivity outcomes of IF are influenced by age, sex, socioeconomic status, and pre-existing health conditions. Younger employees and those with higher health literacy are more likely to integrate IF effectively, while individuals with chronic conditions or lower access to healthy food options may face challenges (Guo et al., 2021; Dall et al., 2024). Socioeconomic factors intersect with workplace nutrition inequities, potentially magnifying disparities in productivity gains (Ambikapathi et al., 2022; Drewnowski, 2020).

This analysis underscores the importance of customized workplace wellness strategies, accounting for both the type of work and workforce diversity. Policies promoting IF must integrate flexibility, nutrition education, and equitable access to healthy foods to maximize productivity benefits while minimizing potential adverse effects (Sharafeddine et al., 2024; Dall et al., 2024).

Challenges, Risks, and Limitations

While intermittent fasting (IF) has demonstrated potential benefits for metabolic health and workforce productivity, several challenges and limitations must be considered when assessing its economic impact.

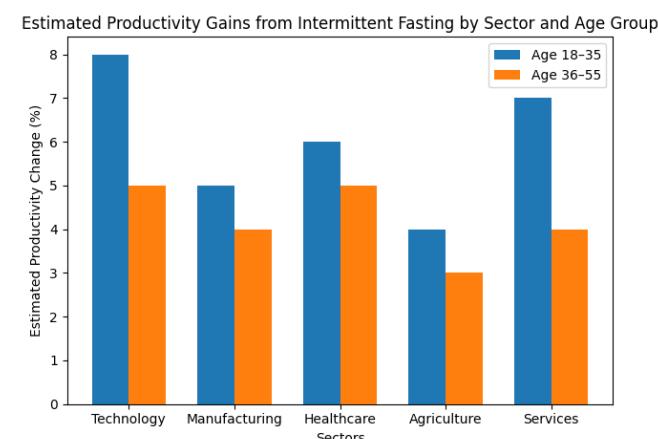
Individual

Eating disorders (Patterson & Sears, 2017; Mattson, 2023). Employers implementing IF-based wellness programs must

consider these health risks to avoid adverse outcomes that could reduce productivity.

Compliance and Sustainability

Adherence Variability and Health Risks


The physiological response to IF can vary significantly across individuals due to age, baseline metabolic health, comorbidities, and lifestyle factors. While studies indicate improvements in cardiometabolic risk factors and gut microbiota among metabolic syndrome patients (Guo et al., 2021), fasting may pose risks for individuals with certain medical conditions, such as diabetes, hypoglycemia, or those to IF protocols can be challenging in demanding work environments. Irregular schedules, high-stress occupations, and limited access to healthy foods can reduce compliance (Sharafeddine et al., 2024). Additionally, long-term sustainability of fasting practices remains uncertain, with evidence suggesting diminishing adherence over time without structured support (Drewnowski, 2020).

Potential Productivity Trade-offs

While IF may enhance cognitive performance and energy in some individuals, it can also cause fatigue, irritability, or reduced concentration, particularly during initial adaptation phases (Sharafeddine et al., 2024; Mattson, 2023). These short-term negative effects may offset potential gains in productivity and complicate employer evaluations of economic benefit.

Workplace Equity and Accessibility

Not all workers can participate equally in IF due to occupational constraints, shift schedules, or cultural/religious considerations. Such disparities may exacerbate existing inequities in workplace wellness initiatives and create differential productivity outcomes (Ambikapathi et al., 2022; Dall et al., 2024).

Fig 2: The Grouped bar graph shows estimated productivity gains from Intermittent Fasting (IF) across sectors and age groups

Table 2: Summary of Key Challenges and Risks of Intermittent Fasting for Workforce Productivity

Category	Key Considerations	Potential Impact on Productivity
Individual Health Variability	Age, metabolic health, comorbidities, eating disorders (Patterson & Sears, 2017)	Risk of fatigue, illness, or absenteeism
Compliance & Sustainability	Adaptation difficulties, irregular schedules, limited food access (Sharafeddine et al., 2024)	Reduced long-term adherence, inconsistent benefits
Short-Term Cognitive Effects	Initial irritability, reduced concentration (Mattson, 2023)	Temporary productivity dips
Workplace Equity	Occupational, cultural, and shift-related barriers (Ambikapathi et al., 2022)	Unequal participation, potential inequities
Measurement & Methodology	Confounding variables, generalizability limitations (Drewnowski, 2020)	Challenges in quantifying economic impact accurately
Systemic & Environmental Factors	Food system resilience, nutritional quality, environmental sustainability (Huff et al., 2015; Drouillard, 2018)	External constraints may limit workforce benefits

Methodological and Measurement Limitations

Quantifying the economic impact of IF on workforce productivity involves multiple variables, including presenteeism, absenteeism, and healthcare-related costs. Accurate measurement is challenging due to confounding factors, such as concurrent lifestyle changes, nutritional interventions, or sector-specific demands (Drewnowski, 2020; Dall et al., 2024). Additionally, generalizing results from short-term clinical studies to heterogeneous workforce populations may lead to over- or underestimation of effects (Sharafeddine et al., 2024).

Broader Systemic and Environmental Considerations

The adoption of IF may interact with broader food system dynamics, such as the availability of nutritious foods, supply chain resilience, and environmental impacts of dietary shifts (Huff et al., 2015; Ambikapathi et al., 2022; Drouillard, 2018). Economic benefits at the workforce level may therefore be influenced by systemic factors beyond individual or organizational control.

CONCLUSION

This study underscores the potential economic and productivity benefits of intermittent fasting (IF) within the U.S. workforce. Evidence indicates that IF can improve cognitive performance, energy regulation, and metabolic health, which are critical determinants of labor efficiency and workplace wellbeing (Mattson, 2023; Patterson & Sears, 2017; Guo et al., 2021). Research on fasting practices, including those observed during Ramadan, further highlights improvements in focus, mood, and overall employee performance, suggesting meaningful organizational gains when fasting protocols are integrated thoughtfully into workplace health programs (Sharafeddine, Diab-Bahman, & Al-Enzi, 2024).

From an economic perspective, enhanced productivity through IF could mitigate costs associated with absenteeism,

presenteeism, and chronic health conditions such as obesity and metabolic syndrome, which place a significant burden on employers and the broader U.S. economy (Dall et al., 2024; Drewnowski, 2020). While IF offers promise, its implementation must consider individual variability, occupational demands, and equity in access to healthy dietary practices, particularly within diverse workforce populations (Ambikapathi et al., 2022; Huff et al., 2015).

Overall, promoting IF as part of comprehensive workplace wellness strategies may present a viable pathway to optimize employee health and productivity. Future research should explore longitudinal and sector-specific analyses to quantify economic impacts and identify best practices for integrating fasting into organizational health initiatives, ensuring both efficiency and inclusivity in labor outcomes (Bivens, 2019; Drouillard, 2018; Aradhyula, 2024).

REFERENCES

- 1 Sharafeddine, W., Diab-Bahman, R., & Al-Enzi, A. (2024). The impact of fasting on workplace productivity and wellbeing: a review of fasting in Ramadan. *International Journal of Productivity and Quality Management*, 41(1), 32-48.
- 2 Aradhyula, G. (2024). Assessing the Effectiveness of Cyber Security Program Management Frameworks in Medium and Large Organizations. *Multidisciplinary Innovations & Research Analysis*, 5(4), 41-59.
- 3 Dall, T. M., Sapra, T., Natale, Z., Livingston, T., & Chen, F. (2024). Assessing the economic impact of obesity and overweight on employers: identifying opportunities to improve work force health and well-being. *Nutrition & Diabetes*, 14(1), 96.
- 4 Drewnowski, A. (2020). Impact of nutrition interventions and dietary nutrient density on productivity in the workplace. *Nutrition reviews*, 78(3), 215-224.
- 5 Mattson, M. P. (2023). *The intermittent fasting revolution: The science of optimizing health and enhancing performance*. MIT Press.
- 6 Patterson, R. E., & Sears, D. D. (2017). Metabolic effects of intermittent fasting. *Annual review of nutrition*, 37(1), 371-393.
- 7 Guo, Y., Luo, S., Ye, Y., Yin, S., Fan, J., & Xia, M. (2021). Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients. *The Journal of*

Clinical Endocrinology & Metabolism, 106(1), 64-79.

[8] Drouillard, J. S. (2018). Current situation and future trends for beef production in the United States of America—A review. *Asian-Australasian journal of animal sciences*, 31(7), 1007.

[9] Huff, A. G., Beyeler, W. E., Kelley, N. S., & McNitt, J. A. (2015). How resilient is the United States' food system to pandemics?. *Journal of environmental studies and sciences*, 5(3), 337-347.

[10] Bivens, J. (2019). Updated employment multipliers for the US economy. *Economic Policy Institute*, 23, 2019.

[11] Ambikapathi, R., Schneider, K. R., Davis, B., Herrero, M., Winters, P., & Fanzo, J. C. (2022). Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. *Nature Food*, 3(9), 764-779.

[12] Bello, I. O. (2020). The Economics of Trust: Why Institutional Confidence Is the New Currency of Governance. *International Journal of Technology, Management and Humanities*, 6(03-04), 74-92.

[13] Amuda, B. (2020). Integration of Remote Sensing and GIS for Early Warning Systems of Malaria Epidemics in Nigeria. *SAMRIDHI: A Journal of Physical Sciences, Engineering and Technology*, 12(02), 145-152.

[14] Azmi, S. K., Vethachalam, S., & Karamchand, G. (2022). The Scalability Bottleneck in Legacy Public Financial Management Systems: A Case for Hybrid Cloud Data Lakes in Emerging Economies.

[15] SANUSI, B. O. (2022). Sustainable Stormwater Management: Evaluating the Effectiveness of Green Infrastructure in Midwestern Cities. *Well Testing Journal*, 31(2), 74-96.

[16] Taiwo, S. O. (2022). PFAI™: A Predictive Financial Planning and Analysis Intelligence Framework for Transforming Enterprise Decision-Making.

[17] Sanusi, B. O. Risk Management in Civil Engineering Projects Using Data Analytics.

[18] Syed, Khundmir Azmi. (2022). The Scalability Bottleneck in Legacy Public Financial Management Systems: A Case for Hybrid Cloud Data Lakes in Emerging Economies.

[19] Bodunwa, O. K., & Makinde, J. O. (2020). Application of Critical Path Method (CPM) and Project Evaluation Review Techniques (PERT) in Project Planning and Scheduling. *J. Math. Stat. Sci*, 6, 1-8.

[20] Sanusi, B. O. Risk Management in Civil Engineering Projects Using Data Analytics.

[21] Isqeele Adesegun, O., Akinpeloye, O. J., & Dada, L. A. (2020). Probability Distribution Fitting to Maternal Mortality Rates in Nigeria. *Asian Journal of Mathematical Sciences*.

[22] Bello, I. O. (2021). Humanizing Automation: Lessons from Amazon's Workforce Transition to Robotics. *International Journal of Technology, Management and Humanities*, 7(04), 41-50.

[23] Amuda, B. (2022). Integrating Social Media and GIS Data to Map Vaccine Hesitancy Hotspots in the United States. *Multidisciplinary Innovations & Research Analysis*, 3(4), 35-50.

[24] Syed, Khundmir Azmi. (2023). Implementing a Petabyte-Scale Data Lakehouse for India's Public Financial Management System: A High-Throughput Ingestion and Processing Framework.

[25] Oyebode, O. A. (2022). *Using Deep Learning to Identify Oil Spill Slicks by Analyzing Remote Sensing Images* (Master's thesis, Texas A&M University-Kingsville).

[26] Olalekan, M. J. (2021). Determinants of Civilian Participation Rate in G7 Countries from (1980-2018). *Multidisciplinary Innovations & Research Analysis*, 2(4), 25-42.

[27] Sanusi, B. O. (2024). The Role of Data-Driven Decision-Making in Reducing Project Delays and Cost Overruns in Civil Engineering Projects. *SAMRIDHI: A Journal of Physical Sciences, Engineering and Technology*, 16(04), 182-192.

[28] Ghodeswar, A. (2022). Copyright© 2022 by Archana Ghodeswar (Doctoral dissertation, Georgia Institute of Technology).

[29] Asamoah, A. N. (2022). Global Real-Time Surveillance of Emerging Antimicrobial Resistance Using Multi-Source Data Analytics. *INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH*, 7(02), 30-37.

[30] Pullamma, S. K. R. (2022). Event-Driven Microservices for Real-Time Revenue Recognition in Cloud-Based Enterprise Applications. *SAMRIDHI: A Journal of Physical Sciences, Engineering and Technology*, 14(04), 176-184.

[31] Oyebode, O. (2022). Neuro-Symbolic Deep Learning Fused with Blockchain Consensus for Interpretable, Verifiable, and Decentralized Decision-Making in High-Stakes Socio-Technical Systems. *International Journal of Computer Applications Technology and Research*, 11(12), 668-686.

[32] Syed, Khundmir Azmi & Vethachalam, Suresh & Karamchand, Gopalakrishna & Gopi, Anoop. (2023). Implementing a Petabyte-Scale Data Lakehouse for India's Public Financial Management System: A High-Throughput Ingestion and Processing Framework.

[33] SANUSI, B. O. (2023). Performance monitoring and adaptive management of as-built green infrastructure systems. *Well Testing Journal*, 32(2), 224-237.

[34] Olalekan, M. J. (2023). Economic and Demographic Drivers of US Medicare Spending (2010–2023): An Econometric Study Using CMS and FRED Data. *SAMRIDHI: A Journal of Physical Sciences, Engineering and Technology*, 15(04), 433-440.

[35] Asamoah, A. N. (2023). The Cost of Ignoring Pharmacogenomics: A US Health Economic Analysis of Preventable Statin and Antihypertensive Induced Adverse Drug Reactions. *SRMS JOURNAL OF MEDICAL SCIENCE*, 8(01), 55-61.

[36] Asamoah, A. N. (2023). Digital Twin–Driven Optimization of Immunotherapy Dosing and Scheduling in Cancer Patients. *Well Testing Journal*, 32(2), 195-206.

[37] Asamoah, A. N. (2023). Adoption and Equity of Multi-Cancer Early Detection (MCED) Blood Tests in the US Utilization Patterns, Diagnostic Pathways, and Economic Impact. *INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH*, 8(02), 35-41.

[38] Taiwo, S. O., Aramide, O. O., & Tiamiyu, O. R. (2023). Blockchain and Federated Analytics for Ethical and Secure CPG Supply Chains. *Journal of Computational Analysis and Applications*, 31(3), 732-749.

[39] Odunaike, A. (2023). Time-Varying Copula Networks for Capturing Dynamic Default Correlations in Credit Portfolios. *Multidisciplinary Innovations & Research Analysis*, 4(4), 16-37.

[40] Oyebode, O. (2024). Federated Causal-NeuroSymbolic Architectures for Auditable, Self-Governing, and Economically Rational AI Agents in Financial Systems. *Well Testing Journal*, 33, 693-710.

[41] Amuda, B., & Ajisafe, T. (2024). Evaluating the Role of Citizen Science in Improving Spatial Data Quality for Health Planning in the USA. *International Journal of Technology, Management and Humanities*, 10(04), 147-164.

[42] Olalekan, M. J. (2024). Application of HWMA Control Charts with Ranked Set Sampling for Quality Monitoring: A Case Study on

Pepsi Cola Fill Volume Data. *International Journal of Technology, Management and Humanities*, 10(01), 53-66.

[43] Azmi, S. K. (2024). From Reactive Reporting to Proactive Governance: The Impact of a Real-Time Analytics Engine on India's Direct Benefit Transfer Schemes.

[44] SANUSI, B. O. (2024). Integration of nature-based solutions in urban planning: policy, governance, and institutional frameworks. *Journal of Mechanical, Civil and Industrial Engineering*, 5(2), 10-25.

[45] Olalekan, M. J. (2024). Logistic Regression Predicting the Odds of a Homeless Individual being approved for shelter. *Multidisciplinary Innovations & Research Analysis*, 5(4), 7-27.

[46] Bello, I. O. (2024). From Public Confidence to Civic Technology: Designing the Next Generation of Governance Analytics. *International Journal of Technology, Management and Humanities*, 10(04), 165-184.

[47] Sanusi, B. Design and Construction of Hospitals: Integrating Civil Engineering with Healthcare Facility Requirements.

[48] Taiwo, Samuel & Aramide, Oluwatosin & Tiamiyu, Oluwabukola. (2024). Explainable AI Models for Ensuring Transparency in CPG Markets Pricing and Promotions. 33. 2024.

[49] Aradhyula, G. (2024). Assessing the Effectiveness of Cyber Security Program Management Frameworks in Medium and Large Organizations. *Multidisciplinary Innovations & Research Analysis*, 5(4), 41-59.

[50] ASAMOAH, A. N., APPIAGYEI, J. B., AMOFA, F. A., & OTU, R. O. PERSONALIZED NANOMEDICINE DELIVERY SYSTEMS USING MACHINE LEARNING AND PATIENT-SPECIFIC DATA. SYED KHUNDMIR AZMI. (2024).

[51] JVM OPTIMIZATION TECHNIQUES FOR HIGH-THROUGHPUT AI AND ML SYSTEMS. In Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ Journal of Tianjin University Science and Technology (Vol. 57, Number 1, pp. 315–330). Zenodo. <https://doi.org/10.5281/zenodo.17556601>

