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Abstract 

Artificial intelligence (AI) has become a prevalent feature of modern cybersecurity programs for 

critical infrastructure systems such as those used in energy, transportation, healthcare, and 

industrial control systems. AI-based security solutions can provide more accurate detection, 

adaptive response, and scalability than traditional rule-based systems. However, the use of these 

systems in safety-critical and highly regulated sectors of the economy raises significant ethical 

and regulatory issues which present additional challenges to their effective management. These 

include risks of adversarial machine learning, explainability limitations of complex models, 

accountability gaps for autonomous decisions, and the challenge of meeting regulatory 

requirements for cybersecurity practices and data privacy in AI-driven operations. 

This paper presents a thorough, literature-based exploration of the ethical and regulatory 

challenges of program management for AI-focused cybersecurity programs for critical 

infrastructure. Building on existing research in areas such as adversarial machine learning, 

ethical AI, and cybersecurity for critical infrastructure, this work takes a program-level 

perspective to understand how technical, ethical, and regulatory risks manifest and intersect at 

various stages of the AI lifecycle. By reviewing existing frameworks, standards, and principles in 

these areas, this study identifies the structural limitations of traditional cybersecurity program 

governance frameworks when applied to AI-based solutions. 

By conceptually organizing these issues along several dimensions of responsible AI - namely 

robustness, transparency, accountability, and regulatory compliance - this study aims to provide 

an analytically coherent foundation to understand responsible AI in the context of critical 

infrastructure cybersecurity. The insights presented highlight opportunities for holistic 

governance approaches that balance innovation, ethics, and legal considerations, while 

supporting sustainable, long-term trust in AI-enabled cybersecurity solutions. 

Keywords: AI-centric cybersecurity, critical infrastructure protection, ethical AI governance, 

regulatory compliance, adversarial machine learning, cybersecurity program management. 
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1. Introduction 

1.1 Context: AI in Cybersecurity for Critical Infrastructure  

Industrial sectors, critical infrastructure, and enterprises increasingly rely on networked 

computers and automated systems to ensure their reliability, efficiency, and availability to the 

customers. As these digitalized assets continue to grow in size and complexity, their operational 

activities generate petabytes of network traffic, sensor data, and execution logs per day, creating 

an information volume that can overwhelm traditional security monitoring tools. To bridge this 

gap, cybersecurity programs increasingly adopt artificial intelligence to enhance detection, 

analysis, automation, and orchestration. Machine learning (ML) models, a primary branch of AI, 

are in particular ubiquitously leveraged to enable, e.g., intrusion detection, anomaly detection, 

malware classification, or behavior analysis, as they can learn complex representations that are 

hard to capture with rule-based techniques (Buczak & Guven, 2015; Khraisat et al., 2019). The 

integration of AI has been especially prevalent in the field of securing industrial control systems 

and cyber-physical systems in general. This is due to the fact that protecting systems like 

supervisory control and data acquisition systems, smart grids, or automated manufacturing from 

cybersecurity incidents is a prerequisite for ensuring that no cascading effects or physical 

damages result from those incidents. Furthermore, these applications differ from ―standard‖ 

enterprise IT systems due to stricter availability requirements, legacy systems, or safety-critical 

operations. It has been shown in prior work that ML methods are capable of detecting anomalies 

that are too subtle to be discerned by humans or that do not match common attack scenarios, yet 

still indicate an attacker having potentially compromised or changed the behavior of an industrial 

system (Knowles et al., 2015; Humayed et al., 2017). 

At the same time, the increasing adoption of AI for cybersecurity also exposes key 

vulnerabilities in the previous state of affairs, which was mainly based on hard-coded security 

rules and signatures. The key point is that many traditional detection methods, e.g., signature-

based intrusion detection systems, have largely been built around the assumption of a largely 

stable threat model and well-defined attack patterns. In reality, cyber adversaries are much more 

dynamic in that their tactics, techniques, and procedures are known to be very heterogeneous and 

can adapt in near real-time to different contexts, rendering traditional rules highly ineffective. 

Sommer and Paxson (2010) show, e.g., that learning systems operating in the real world need to 

address concepts such as concept drift, data imbalance, and adversarial learning, which are not 

typically seen in ―conventional‖ information security. This has also been expressed by other 

researchers in the sense that probabilistic and adaptive AI/ML systems replace previous rule-

based defenses and deterministic security models (Nguyen et al., 2015). 
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1.2 Context: Ethical and Regulatory Concerns of AI in 

Cybersecurity 

In addition to the limitations of traditional security systems, AI also opens the door for a wide 

range of non-technical risks, such as ethical and regulatory risks, which are not captured by 

purely functional performance measures, e.g., F1-score, precision, or recall. One prominent 

ethical concern of machine learning is its apparent ―black box‖ nature, i.e., that AI models 

cannot readily be explained or interpreted by humans. This severely impacts critical 

infrastructure settings, as it weakens accountability, reduces human operators’ trust, and hampers 

post-breach forensics in safety-critical systems in case of false alarms or, even worse, not raising 

the alarm at all (Guidotti et al., 2018). Here, the ethical consideration is not just one of reliability 

and explainability in general, but one of the responsibility in contexts where AI systems are 

autonomously taking decisions to flag or counter threats, yet the root cause of a false alert cannot 

be explained in a transparent way. 

Another key issue of AI and ML for cybersecurity is that systems built with these technologies 

are inherently vulnerable to so-called adversarial machine learning (AML) attacks, which are 

already shown early on in seminal work (Barreno et al., 2006). In brief, these attacks can make 

use of intentional poisoning of the training data or can evade detection entirely by exploiting 

unknown weaknesses or prediction patterns of the ML model. Following work has shown this 

risk to be not only inherent but, also, very actively exploited in security-sensitive applications in 

the wild, such as software vulnerability detection, antivirus systems, or malware scanners 

(Papernot et al., 2018). Given the safety-critical nature of critical infrastructure and its services, 

this too can lead to significant and even potentially existential risks in the form of service 

disruptions, physical damage, or harm to human lives. 

On the regulatory side, the growing use of AI also places cybersecurity programs for critical 

infrastructure in the field of tension of increasingly stringent data protection requirements. As 

data protection regulations cover the processing of personal data and, in the EU in particular, 

special categories of personal data which are in many cases relevant to security-sensitive 

systems, compliance with data protection obligations, such as lawful processing or purpose 

limitation, is often highly challenging for AI-centric cybersecurity architectures (Regulation, 

2016). The same also applies, to a certain degree, to the cybersecurity regulatory landscape, 

where standard-setting and specific regulation typically expect critical infrastructure operators to 

adhere to minimum cybersecurity standards and follow risk management, resilience, and 

accountability requirements in their operations. While the NIST Cybersecurity Framework, for 

example, offers a very structured and comprehensive overview of these topics, it remains 

agnostic on many AI-related aspects and thus does not provide holistic guidance for AI-specific 

risks and concerns (Cybersecurity, 2018). 
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1.3 Scope and Contributions  

The purpose of this work is to provide a comprehensive, high-level treatment of ethical and 

regulatory challenges that are relevant to AI-centric cybersecurity programs for critical 

infrastructure. This is a program- and governance-level framing that views AI-augmented 

cybersecurity as a managed organizational capability, which also consists of other organizational 

elements than the technology alone. In that sense, it will not focus on the deep technical specifics 

of particular AI/ML approaches for security, such as detection models, but will instead 

concentrate on ethical, legal, and regulatory topics that impact the adoption, integration, and 

operations of AI as a whole within the organization. The general objective of this research is then 

to leverage the rich body of existing literature on adversarial ML, ethical AI, and critical 

infrastructure cybersecurity to synthesize an integrated analytical perspective on the key 

challenges that these domains raise for AI governance. 

In order to meet this objective, the paper has three main contributions. First, it surveys existing 

research on ethical and adversarial risks, data protection issues, and cybersecurity regulatory 

constraints. While much of this research has been conducted independently in each of the three 

aforementioned fields, this work provides a framework for understanding and categorizing the 

main issues and challenges in the context of critical infrastructure. Second, this paper also 

emphasizes the importance of a strong program-level governance for ethically aligned and 

legally compliant AI-driven cybersecurity operations. Third, it shows how a principled 

integration of well-established cybersecurity standards and ethical AI guidelines can help 

organizations practically achieve such responsible and resilient AI adoption in critical 

infrastructure contexts. 

2. AI-Centric Cybersecurity in Critical Infrastructure 

Systems 

Artificial intelligence (AI) has become an integral part of cybersecurity operations, augmenting 

human analysts in the detection, analysis, and response to cyber threats. In contrast to traditional 

security mechanisms, which often rely on manually-defined rules and signatures, AI-based 

solutions are data-driven, learning to detect complex attack patterns and previously unseen 

threats through exposure to large volumes of network traffic, malware samples, and security 

logs. In critical infrastructure settings, where resilience and safety are paramount, such 

capabilities are increasingly seen as necessary. However, their adoption also comes with 

technical, ethical, and operational risks that need to be managed carefully. 

2.1 Machine Learning Techniques for Cyber Defense  

Machine learning (ML) techniques are essential for modern cyber defense, underpinning many 

intrusion detection and network monitoring systems. Supervised learning techniques are based 
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on labeled training data that inform the classifier how to discriminate between normal and 

malicious behavior. Supervised methods have been employed extensively in intrusion detection 

systems, where they are used to detect known attack patterns with high accuracy (Buczak & 

Guven, 2015). Popular supervised learning techniques include decision trees, support vector 

machines, and neural networks. They can process large volumes of network traffic data and learn 

to recognize subtle indicators of malicious activity. However, supervised ML models require 

representative and labeled training data, which may be difficult to obtain in dynamic threat 

environments (Khraisat et al., 2019). 

Unsupervised learning methods are particularly well-suited to anomaly detection in 

cybersecurity, as they do not require labeled data to identify suspicious activity. Clustering, 

density estimation, and autoencoders are some of the common unsupervised ML approaches for 

anomaly detection in network data. They are used to construct a model of normal behavior and to 

detect deviations, which are flagged as anomalies for further investigation. Unsupervised 

learning is valuable in critical infrastructure contexts, where novel or targeted attacks may not 

have signatures or are difficult to label (Buczak & Guven, 2015). However, since there are no 

explicit labels, unsupervised methods may have higher false positive rates, which could 

overwhelm analysts and impede operations. 

Predictive analytics is another important machine learning application in cybersecurity. By 

leveraging historical incident data, system logs, threat intelligence feeds, and other sources of 

information, predictive models can forecast future attacks, estimate their likelihood, and identify 

high-risk assets. In network monitoring, anomaly detection algorithms are used to discover 

deviations from expected traffic patterns, device behavior, and system performance. These 

predictive capabilities are especially important in critical infrastructure settings, where networks 

are often large-scale and distributed. In such systems, manual monitoring and analysis are 

infeasible and delayed detection can lead to catastrophic failures (Khraisat et al., 2019). 

However, predictive models raise ethical concerns around transparency and accountability, as 

decisions are increasingly based on automated risk assessments. 

2.2 Operational Characteristics of Critical Infrastructure  

AI-centric cybersecurity solutions must be evaluated in the context of the infrastructure on which 

they are deployed. Critical infrastructure environments differ from conventional enterprise IT in 

several ways, and those differences have a direct impact on the performance of AI algorithms 

and tools. One of the most important features is that control systems and cyber-physical systems 

(CPS) often have strict real-time constraints. In industrial control systems (ICS) and CPS, 

deterministic response times are often required for safe and stable operation (Stouffer et al., 

2011). Cybersecurity functions that introduce latency or other forms of unpredictable behavior 

may interfere with control processes and result in physical damage or safety incidents. 
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Safety requirements are another important factor that must be considered when applying AI tools 

for critical infrastructure security. In many critical infrastructure sectors, such as energy, 

transportation, and healthcare, cybersecurity failures can have direct consequences for human 

safety and welfare. In these contexts, cybersecurity decisions must be conservative, preferring 

reliability and fail-safe behavior over more aggressive automated responses. This requirement is 

often at odds with ML systems, which can change their behavior dynamically in response to new 

data and may not behave predictably in adversarial settings. Many critical infrastructure 

environments are also characterized by legacy systems that are not designed with cybersecurity 

in mind. They may have limited computational capacity, use proprietary or outdated protocols, 

and have lifecycles measured in decades (Stouffer et al., 2011). These factors constrain the 

application of complex ML models and complicate processes for updating, retraining, and 

validating models. 

Finally, the cost of failure for cybersecurity in critical infrastructure settings is much higher than 

for traditional IT systems. Disruptions or malfunctions in power grids, water systems, and 

transportation networks can have cascading effects, resulting in economic losses, environmental 

damage, and national security risks. As a result, both the ethical and the security risks of AI-

centric cybersecurity systems are magnified. Model errors, biased training data, or adversarial 

manipulation may lead not only to loss of detection performance but also to loss of confidence in 

automated decision support. This operational reality means that AI techniques and tools must be 

carefully aligned with infrastructure constraints and governance. 

Table 1: AI Techniques Used in Critical Infrastructure Cybersecurity and Operational Risks 

AI Technique Cybersecurity 

Function 

Infrastructure 

Context 

Ethical and 

Security Risks 

Key References 

Supervised 

Learning 

Intrusion 

detection, 

malware 

classification 

Industrial control 

systems, 

enterprise 

networks 

Dependence on 

labeled data, 

susceptibility to 

adversarial 

manipulation 

Buczak & Guven 

(2015); Khraisat 

et al. (2019) 

Unsupervised 

Learning 

Anomaly 

detection, zero-

day attack 

identification 

Cyber-physical 

systems, sensor 

networks 

High false 

positives, limited 

explainability 

Buczak & Guven 

(2015) 

Predictive 

Analytics 

Threat 

forecasting, risk 

prioritization 

Large-scale 

critical 

infrastructure 

networks 

Opacity in risk 

scoring, 

accountability 

challenges 

Khraisat et al. 

(2019) 

Anomaly 

Detection Models 

Continuous 

network and 

system monitoring 

Real-time 

operational 

environments 

Latency risks, 

model drift over 

time 

Stouffer et al. 

(2011) 
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3. Adversarial Risks and Security Limitations of AI Models 

The development of AI-based cybersecurity models has significantly improved accuracy and 

automation of AI-supported detection of intrusions, which is particularly complex in large-scale 

and high-value settings such as critical infrastructure. Prior work, however, has shown that ML-

based security models operate in the most fundamental adversarial settings and are thus subject 

to adversarial risk. Adversaries have a strong incentive to manipulate the learning process and/or 

outputs, which then leads to a structural limitation on the security, trustworthiness, and longer-

term effectiveness of AI-centric cybersecurity programs. 

3.1 The Nature of Adversarial ML in Cybersecurity 

Adversarial machine learning is a process of data, model, or decision boundary manipulation 

with the aim to subvert system performance or to be undetected by a system. Dalvi et al. (2004) 

were among the first to show that classifiers trained and deployed in adversarial settings are 

vulnerable to adversarial manipulation, especially when the attacker has partial knowledge of the 

learning process. The cybersecurity setting is unique in this context, as the attacker can 

iteratively probe the system and adapt behavior based on system feedback. 

Poisoning attacks are some of the most impactful attack types on AI-based cybersecurity models. 

The focus of poisoning attacks is the training phase of the learning pipeline, during which an 

attacker injects malicious samples to contaminate the training set and poison the resulting model. 

Barreno et al. (2006) have shown that even limited poisoning can lead to a significant shift in 

decision boundaries which result in systematic misclassification of malicious behavior as normal 

behavior. In a critical infrastructure setting, retraining of a model may be partially or fully 

automated based on the constant stream of data, meaning a poisoning attack can remain 

undetected for a long time and gradually degrade the detection performance of the system. 

Evasion attacks, in contrast, are performed during the inference phase of model deployment. In 

these attacks, malicious inputs are modified to avoid detection, without changing the intended 

goal of the attack. Adversaries craft inputs that are close to the learned decision boundaries of the 

classifier. Evasion attacks are especially powerful against models that are static or otherwise 

insufficiently monitored, which allow adversaries to pass intrusions undetected by cybersecurity 

defenses while maintaining stealth of their operations (Dalvi et al., 2004; Barreno et al., 2006). 

Poisoning and evasion attacks, however, are a simplification of the form of adversarial behavior 

that is found in real-world cybersecurity settings, as attackers are adaptive. Biggio and Roli 

(2018) point out that attackers are constantly changing their tactics in response to new defensive 

measures, meaning that there is a continuously changing threat landscape. This adaptive nature 

of attack behavior stands in contrast to security assumptions that a model operates against a static 

or stationary distribution of data. In practice, attackers may also use a mix of attack types, use 
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feedback to maximize impact, and leverage long-term reconnaissance to better position their 

operations, all of which can expose vulnerabilities in AI-based cybersecurity defenses. 

3.2 The Reality of Robustness Failures in AI-Based Security Systems 

The adversarial vulnerability of AI models is also closely related to the concept of model 

robustness. Goodfellow et al. (2014) showed that deep learning models are extremely sensitive to 

small, imperceptible, but carefully crafted input perturbations. Adversarial perturbations are 

input modifications that lead a classifier to confidently make the wrong prediction, even when 

the input data looks legitimate. In the context of cybersecurity systems, this sensitivity can result 

in false negatives, delayed reaction times, or reduced situational awareness. 

Robustness failures can have a high impact in a critical infrastructure context, as a failure to 

correctly classify an input can have physical and societal impact through the control system(s) on 

which the cybersecurity system is operating. Deep neural networks, for instance, use high-

dimensional representations of input features, which can amplify small changes to input data and 

make them susceptible to adversarial manipulation. Goodfellow et al. (2014) point out that this 

vulnerability is not a property of a particular network architecture, but a more general property of 

many other linear and non-linear models in use. 

The ability to evaluate the robustness of AI models is further limited in adversarial settings. 

Carlini and Wagner (2017) have shown that proposed defenses against robustness attacks have 

been largely superficial and ineffective under stronger or adaptive attack models. Empirically 

evaluating model robustness also remains a difficult task, with the lack of standardized threat 

models and evaluation metrics, and a tendency towards security by obscurity. These challenges 

limit the generalizability of reported improvements in robustness in the research setting. 

AI-based security systems in cybersecurity programs, however, are often only tested under non-

adversarial settings, and therefore suffer from a lack of adversary-aware evaluation. This can 

leave a false sense of security where a model is seemingly robust under limited testing, but has 

hidden weaknesses that can be exploited in a real-world adversarial context. The lack of widely 

accepted protocols for robustness evaluation in security-critical domains also complicates the 

effective and transparent use of AI models in terms of trust in automated defenses, regulatory 

compliance, and certification. 

Figure 1 presents a bar chart illustrating the relative performance degradation of AI-based 

cybersecurity systems under different types of adversarial attacks. 
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Figure 1: Impact of Adversarial Attacks on AI-Based Cybersecurity Performance 

The graph conceptually demonstrates that poisoning attacks typically cause the most severe long-

term degradation by corrupting training processes, while evasion attacks lead to immediate but 

often less persistent performance losses. Model inference attacks show moderate degradation by 

enabling adversaries to extract system behavior and refine future attacks. This visualization 

reinforces the cumulative impact of adversarial threats on AI-centric cybersecurity performance. 

4. Ethical Challenges in AI-Centric Cybersecurity Programs 

Integrating AI into cybersecurity programs for critical infrastructure introduces a range of ethical 

issues that go beyond traditional technical risk management. AI-driven cybersecurity solutions 

are playing an increasingly decisive role in high-consequence decisions, such as threat 

classification, response, containment, and even system shutdown. In safety-critical and socio-

economically essential critical infrastructure systems, ethical failures can have ripple effects, 

jeopardizing public safety, economic stability, and trust in digital systems. The three interrelated 

ethical challenge areas discussed in this essay are transparency and explainability, accountability 

and human control, and the lack of ethical AI frameworks and documentation. 

4.1 Transparency and Explainability  

AI-powered cybersecurity systems typically employ sophisticated ML models which function as 

black boxes, making security decisions without providing meaningful explanations to the human 
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operators. The resulting ―black-box‖ problem is a critical ethical issue in the context of securing 

critical infrastructure, as stakeholders such as operators, regulators, and auditors may have the 

need or even legal obligation to justify and account for security decisions and system behavior. 

For example, prior work has shown that many state-of-the-art ML models are inherently 

uninterpretable, and that complex input features like network traffic or system logs cannot be 

directly connected to a specific classification (Guidotti et al., 2018). 

In a cybersecurity setting, a lack of explainability also limits transparency and accountability as 

well as forensic analysis after an incident. When an AI system autonomously identifies a 

suspicious event or anomaly or automatically takes a defensive action, the human operators may 

be unable to verify whether this decision was based on an actual threat signal or an artifact of 

data noise and model bias. The lack of explainability further hinders detection and correction of 

errors that occur during adversarial attacks, as the attackers actively probe the system to remain 

undetected while manipulating the system into making errors. 

Approaches to explainable artificial intelligence (XAI) have been developed to address these 

ethical concerns by providing human-understandable explanations of the ML model decisions 

after the fact. Explainability methods, such as local surrogate models or feature attributions, seek 

to make individual model predictions more interpretable to human stakeholders (Ribeiro et al., 

2016). In an AI-centric cybersecurity program, explainability can help to address some of the 

ethical concerns around cybersecurity automation by supporting human validation of the system 

decisions by the operators, the regulatory evaluation of the AI solutions, and organizational 

justification of automated security decisions. However, explainability methods also come with 

tradeoffs between accuracy, fidelity to the original model, computational complexity, and 

latency, which must be carefully considered in the high-speed setting of cyber operations. 

4.2 Accountability and Human Control  

AI-based cybersecurity systems which make high-consequence decisions also raise ethical issues 

around human control and accountability. Autonomous cyber defense mechanisms, such as the 

automated blocking of network traffic or system isolation in response to a perceived threat, can 

cause inadvertent harm if not overseen and controlled by humans. In critical infrastructure 

systems, an incorrect automated decision or containment action can interrupt vital services, 

introduce safety hazards, or cause cascading failures across infrastructure systems. 

Issues around ethical accountability become especially complicated when responsibility is shared 

across many actors, such as the data providers, model developers, system integrators, and system 

operators. In the absence of clearly defined accountability and governance, it can become 

difficult to determine the responsible actor for harmful security actions taken by the AI system. 

This is further complicated in the presence of adversaries who may intentionally elicit an 

automated response from the system with the goal of disrupting the infrastructure service. 
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In the AI ethics literature, many frameworks call for meaningful human control to be a 

prerequisite for high-risk AI systems, especially in safety-critical applications (Floridi et al., 

2018). Human-in-the-loop (HITL) system governance mechanisms are one possible approach to 

ensure that AI systems are not operating without ethical oversight. HITL approaches typically 

involve expert review, escalation paths, and judgment from a human supervisor before an 

automated system response is executed. In a cybersecurity program, such human supervision can 

provide ethical oversight by allowing the human experts to evaluate the response or containment 

plan suggested by the AI system and make the final go/no-go decision, combining the efficiency 

of automated processing with human responsibility to avoid uncontrolled automated harm. 

4.3 Ethical AI Frameworks and Documentation  

Beyond the need for transparency and human control, ethical management of AI-centric 

cybersecurity programs also needs to align with ethical AI frameworks and documentation 

practices. Ethical principles for responsible AI developed in multiple fields call for a range of 

foundational principles, including fairness, accountability, transparency, and respect for human 

values (Floridi et al., 2018; Jobin et al., 2019). For example, the IEEE ethical AI principles for 

example provide a non-exhaustive list of foundational requirements, many of which apply 

directly to ethical cybersecurity, such as ―Avoid Algorithmic Bias‖ or ―Respect Privacy.‖ These 

principles are of particular relevance in cybersecurity for critical infrastructure, as security 

decisions can impact the whole population of a region or essential services for a nation. 

One practical challenge in operationalizing ethical AI principles in cybersecurity programs is the 

lack of standardized model documentation practices for AI models. With a lack of standard or 

even ad hoc documentation, it is not possible to fully understand and account for model 

assumptions, intended use cases, limitations, and known ethical risks of the AI model. A number 

of model documentation practices have been suggested to address this need, ranging from 

structured reporting templates to good documentation practices (Mitchell et al., 2019). In the 

context of cybersecurity programs, model documentation supports ethical due diligence and risk 

management by providing operators and stakeholders with essential information about the model 

design, training data, performance characteristics, and intended operational use case. 

Incorporating ethical AI frameworks and documentation practices into cybersecurity programs 

can help ensure that the cybersecurity systems are aligned with ethical AI practices beyond ad 

hoc risk management. This also ties ethical responsibility to established program-level 

management and regulatory practices. 

Figure 2. Ethical Risk Dimensions in AI-Centric Cybersecurity Programs 

Figure 2 (Graph): Radar Chart of Ethical Risk Dimensions in AI-Centric Cybersecurity Programs 
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The radar chart illustrates the relative prominence of ethical risk dimensions in AI-centric 

cybersecurity programs for critical infrastructure. Each axis represents a core ethical dimension 

identified in prior literature. Higher values indicate greater ethical risk exposure. The 

visualization supports comparative analysis of ethical vulnerabilities, highlighting imbalances 

between technical robustness and governance-oriented controls such as transparency and human 

oversight. 

 

5. Regulatory and Legal Challenges 

Regulatory and legal considerations are important to discuss in the context of this paper. 

Cybersecurity programs for critical infrastructure have long been subject to a variety of standards 

and laws, but AI introduces new dimensions to compliance. Most security tools use data 

collection and preconfigured rules, while AI-centric systems often involve real-time data 

streams, automated decision-making, and dynamic learning. These elements can interact with 

data protection, accountability, transparency, and cybersecurity governance requirements in 

complex ways. Ensuring regulatory compliance is therefore an ongoing activity integrated into 

AI systems life cycle management. 
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5.1 Data Protection and Privacy Regulations  

AI-powered cybersecurity systems function through pervasive monitoring, data aggregation, and 

real-time analytics. In the context of critical infrastructure, this typically means processing large 

volumes of network traffic, system logs, user behavior, and operation telemetry. The scale and 

invasiveness of this data processing can lead to privacy concerns and potential violations of data 

protection laws, especially when sensitive or personal data is involved. Intrusion detection and 

anomaly detection based on machine learning often need access to sensitive data that may 

include personally identifiable information, metadata, or even indirectly derivable attributes that 

may fall under regulatory purview. 

Automated decision-making represents another key regulatory issue. Security systems are 

increasingly expected to autonomously classify and respond to perceived threats, often without 

human intervention. This could involve automatically blocking access, denying services, or 

revoking user privileges. Automated actions like this have to be proportional and limited in 

scope, especially when data is processed in ways that users may not have explicitly consented to. 

The lack of transparency in many AI models further exacerbates these concerns, as it may be 

difficult to understand how a specific data point contributed to an alert or other automated 

security decision. 

Regulatory requirements based on data protection laws revolve around transparency, data 

minimization, accountability, and user rights. Privacy considerations in AI-based cybersecurity 

therefore require clear limitations on what data is collected and how it is retained, used, and 

shared with other organizations. Data should not be used for secondary purposes that have not 

been previously authorized or regulated, and collection and retention policies should be clearly 

defined and enforced. The challenge is amplified by the dynamic nature of AI models, where a 

learning system may change its behavior over time in ways not initially accounted for during a 

compliance assessment. 

Auditability and governance requirements are also linked to data protection regulations. It is 

necessary to have detailed records that allow security operators to document how data is used, 

how models are trained and updated, and how automated decisions are justified. This can be 

challenging in critical infrastructure environments where requirements around operational 

continuity, system availability, and real-time processing often take priority over other 

organizational concerns. Managing privacy and data protection in AI-powered cybersecurity 

programs for critical infrastructure therefore requires a coordinated approach that balances legal, 

technical, and organizational factors (Regulation, 2016). 

5.2 Cybersecurity Standards and Frameworks  

Cybersecurity standards and frameworks, which are often a critical part of regulatory 

requirements, also play a role in shaping AI adoption. These frameworks and standards often 
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provide structured approaches for implementing risk management in critical infrastructure, but 

they were not originally designed with adaptive AI models in mind. This creates a gap in which 

AI-specific risks and issues must be understood and then mapped onto existing compliance 

frameworks. 

The National Institute of Standards and Technology (NIST) Cybersecurity Framework provides 

a common risk-based approach to improving cybersecurity for critical infrastructure. It is based 

on core functions – identify, protect, detect, respond, and recover – that are relevant to AI-

enabled security operations. However, incorporating AI systems in a NIST-compliant manner 

requires additional governance considerations, including model validation, adversarial 

robustness, and life cycle considerations. AI-driven detection, for example, may improve the 

detect function of the framework, but its use also introduces false positive rates, model drift, and 

explainability risks that are not explicitly considered in current frameworks (Cybersecurity, 

2018). 

Industrial control systems (ICS) have additional regulatory considerations. ICS are often safety-

critical, have longer system life cycles, and have limited resilience to disruption. Regulations and 

guidance documents specific to ICS security focus heavily on system availability, deterministic 

behavior, and risk containment. As a result, deploying AI-enabled cybersecurity tools in an ICS 

environment can raise questions about predictability and control, as well as traditional 

certification and compliance expectations. Adaptive AI models may have variable behavior over 

time that is at odds with regulatory expectations about system stability and verification in safety-

critical environments (Stouffer et al., 2011). 

The main governance challenge in the context of AI and regulation is in reconciling the adaptive 

behavior of AI systems with an existing compliance regime that does not necessarily account for 

such behavior. This implies extending cybersecurity governance practices to encompass AI-

specific controls, such as model performance monitoring, periodic risk re-evaluation, and 

formalized documentation of training datasets and decision logic. Compliance with existing 

cybersecurity standards and frameworks will not be meaningful if the additional considerations 

around AI systems are not captured. 

Table 2. Regulatory and Standards Landscape for AI-Centric Cybersecurity 

Regulation or 

Standard 

Scope AI Relevance Key Compliance 

Challenges 

Data Protection 

Regulation (EU) 

2016/679 

Personal data 

protection and 

privacy 

Governs data 

collection, 

processing, and 

automated decision-

making in AI-based 

security systems 

Ensuring 

transparency, lawful 

processing, 

auditability, and 

explainability of AI-

driven security 
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decisions 

NIST Cybersecurity 

Framework 

Critical infrastructure 

cybersecurity risk 

management 

Provides structure for 

AI-enabled detection, 

response, and 

recovery functions 

Integrating AI 

lifecycle governance, 

managing model 

drift, and addressing 

adversarial risks 

ICS Security 

Guidelines 

Industrial control 

system protection 

Regulates 

cybersecurity in 

safety-critical and 

operational 

technology 

environments 

Ensuring 

predictability, 

stability, and 

certification of 

adaptive AI security 

mechanisms 

Organizational 

Cybersecurity 

Policies 

Enterprise-level 

governance and 

compliance 

Defines internal 

oversight for AI 

deployment and 

monitoring 

Aligning technical AI 

controls with legal 

and regulatory 

accountability 

requirements 

 

 

6. Program-Level Governance and Management Challenges 

The technical aspects of AI implementation in cybersecurity programs for critical infrastructure 

must be complemented with program-level governance considerations. AI-driven systems are not 

just another technical control; their learning, adaptive, and evolving nature leads to dynamic and 

potentially unpredictable behaviors. This evolution presents additional complexity to 

governance, risk management, and regulatory compliance efforts, especially in safety-critical or 

heavily regulated infrastructure sectors (Knowles et al., 2015). 

Program-level governance of AI in cybersecurity encompasses aspects related to the 

management of AI systems across their operational lifecycle, from development and deployment 

to decommissioning, as well as the identification, assessment, and mitigation of risks specific to 

AI technologies. It also includes the ethical and regulatory compliance aspects within the broader 

cybersecurity management framework. Neglecting these program-level considerations can lead 

to unanticipated and uncontrolled model behaviors, potential non-compliance with regulations, 

and increased exposure to systemic risks. 

6.1 AI Lifecycle Management  

AI-driven cybersecurity solutions have their own lifecycle, which involves data acquisition, 

model training, deployment, monitoring, updating, and eventual decommissioning. Many AI 
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models, in contrast to conventional security systems, are designed to learn continuously from 

new data, which introduces the concept of model drift, where the model’s performance and 

decision boundaries change over time. In the adversarial context of cybersecurity, this drift could 

also be a result of strategic alteration of input data by an attacker (Barreno et al., 2006; Papernot 

et al., 2018). 

Continuous model learning poses challenges to governance, as the behavior of the system may 

deviate from its originally validated state over time. In the absence of structured lifecycle 

management and oversight, AI-based threat detection or response systems may, over time, start 

to violate internal security policies, ethical standards, or even legal regulations. This risk is 

magnified in critical infrastructure domains, where unforeseen actions by the system could have 

serious operational and safety repercussions (Stouffer et al., 2011). 

Lifecycle management, thus, becomes critical and must include governance mechanisms for 

ongoing model oversight. This goes beyond the initial model testing and validation to include 

regular performance audits, controlled update and tuning procedures, and clear ownership for 

model changes and updates. Industrial control systems cybersecurity management emphasizes 

structured change management, thorough documentation, and clear delineation of responsibilities 

and roles, principles that are equally relevant to AI lifecycle governance (Knowles et al., 2015). 

Integrating AI system oversight into existing cybersecurity management processes ensures that 

AI solutions are subject to the same rigor in terms of risk analysis, approval, and change 

management as other critical security controls. 

6.2 Risk Management and Regulatory Compliance  

AI-enabled cybersecurity programs also have to balance the considerations arising from 

operating in adversarial and highly regulated settings. Research in adversarial machine learning 

highlights the potential for attackers to deliberately exploit the learning algorithms through 

various techniques, including poisoning, evasion, and model inversion, thereby directly 

challenging the system’s integrity (Dalvi et al., 2004; Goodfellow et al., 2014; Carlini & 

Wagner, 2017). Parallelly, regulatory and compliance mandates dictate that cybersecurity 

systems operate in a transparent, lawful, and safe manner, especially when handling personally 

identifiable or sensitive data (Regulation, 2016). 

Mitigating risks from adversarial attacks and ensuring regulatory compliance are interrelated 

governance challenges. Defensive strategies like overly aggressive automated response 

mechanisms or non-transparent detection processes can, on the one hand, enhance security 

performance against model-attack techniques but may also run counter to principles of 

accountability and explainability (Floridi et al., 2018; Guidotti et al., 2018). Papernot et al. 

(2018) specifically stress that robust machine learning systems should not be optimized for 

security in isolation but must also respect privacy, transparency, and governance considerations. 
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Program-level risk management of AI systems, thus, needs to be integrative, combining the 

technical security measures with compliance and ethical oversight. Ethical review, legal 

compliance verification, and human-in-the-loop processes should be embedded within AI-driven 

cybersecurity operations. Automation should not be a replacement for human oversight, more so 

in the critical infrastructure domain where the demands for accountability and traceability are 

higher. The human-in-the-loop concept needs to balance automated decision-making with safety 

and ethical responsibilities, with governance structures explicitly defining acceptable risk levels, 

escalation procedures, and mechanisms for regulatory reporting. 

Figure 3. Governance Maturity Versus AI-Related Cyber Risk Over Time 

 

The line graph illustrates an inverse relationship between cybersecurity program governance 

maturity and residual ethical and regulatory risk associated with AI-centric systems. At early 

maturity stages, limited oversight, insufficient lifecycle controls, and fragmented compliance 

integration result in elevated risk exposure. As governance structures mature through formal 

lifecycle management, integrated risk oversight, and regulatory alignment, residual ethical and 

regulatory risk declines. The graph emphasizes that technical robustness alone is insufficient and 

that sustained risk reduction depends on program-level governance evolution. 
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7. Discussion 

7.1 How adversarial robustness, ethical governance and regulatory 

compliance fit together 

The literature reviewed in this project has been synthesized in to a number of key insights. The 

primary insight is that adversarial robustness, ethical governance and regulatory compliance are 

interwoven, fundamental aspects of AI-centric cybersecurity programs, rather than separate or 

siloed areas of concern. Technical evidence from the adversarial machine learning literature has 

shown that AI-based cybersecurity systems are subject to evasion, poisoning, and manipulation 

attacks that can degrade their detection accuracy and reliability (Dalvi et al., 2004; Barreno et al., 

2006; Biggio & Roli, 2018). These technical vulnerabilities have direct ethical and regulatory 

implications when these systems are used in critical infrastructure protection, as false positives or 

manipulated decisions can have real-world consequences for safety and society (Stouffer et al., 

2011; Humayed et al., 2017). 

Ethical AI governance principles, on the other hand, explicitly call for robustness, explainability, 

accountability, and human oversight, among others, as key requirements for trustworthy AI 

deployment (Floridi et al., 2018; Jobin et al., 2019). However, the problem of adversarial 

fragility in AI models raises challenges to these ethical principles, by demonstrating that 

technically insecure models can easily produce misleading, opaque, and unaccountable outputs 

(Moramarco et al., 2019; Zisselman, 2019). In other words, adversarial robustness is not just a 

technical criterion, but also an ethical imperative for AI systems, because weakly robust systems 

could be considered irresponsible or negligent in their protection of critical infrastructures. 

The regulatory dimension of cybersecurity further complicates this relationship. The existing 

data protection and cybersecurity regulations and standards implicitly assume that the systems in 

question function reliably, transparently, and within an acceptable level of risk tolerance 

(Regulation, 2016; Cybersecurity, 2018). When AI models used in security settings are 

susceptible to adversarial attacks, or simply lack explainability and transparency in their 

operations, it becomes very difficult to prove compliance with many accountability, auditability, 

and risk management requirements. In this way, the technical robustness, ethical alignment, and 

regulatory compliance of AI-based cybersecurity systems are mutually dependent on one 

another. 

7.2 Identified structural gaps in AI-specific cybersecurity 

management programs 

The literature analysis conducted for this project also enabled identification of certain structural 

gaps in existing cybersecurity management frameworks for AI-driven systems. These 

frameworks were developed based on deterministic systems, static threat models, and rule-based 
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controls (Sommer & Paxson, 2010; Knowles et al., 2015). AI-centric cybersecurity, by contrast, 

is more adaptive, probabilistic, and subject to continuous model updates and learning, which 

means that its security governance needs and challenges may not be fully addressed or 

understood by current standards. 

The first gap relates to the lifecycle of AI-driven cybersecurity systems. Traditional 

cybersecurity frameworks focus on system deployment and runtime monitoring, but leave much 

of the continuous learning, model drift, and model retraining under-governed (Papernot et al., 

2018). While the training and operational phases of AI model lifecycle may be well defined, the 

processes that occur in between, such as retraining and validation of models, are not as explicitly 

governed. This gap in lifecycle management, in turn, leaves room for ethical and regulatory risks 

to materialize and accumulate unobserved over time. 

The second gap is that of explainability and accountability of decisions. Ethical AI research is by 

now familiar with the notions of interpretable and explainable AI, which lay emphasis on making 

automated decisions understandable and justifiable (Ribeiro et al., 2016; Guidotti et al., 2018). 

However, the current landscape of cybersecurity management practice has few mandates or 

expectations of explainability for cybersecurity decisions, be they detection or response in 

nature. As such, the gap between research on the ethics of AI explainability and current 

cybersecurity governance practice complicates the verification of compliance, incident 

investigation and reporting, and stakeholder trust, especially in regulated critical infrastructure 

settings. 

Finally, and most critically, the issue of adversarial risk management is not sufficiently 

integrated at the program level. The existing cybersecurity management frameworks often only 

address adversarial risks in passing, or at most as a program-level risk, and not as a coordinated 

risk to be integrated with technical, ethical, and regulatory dimensions of a cybersecurity 

program. The adversarial machine learning literature abounds with examples of AI models being 

susceptible to various attacks or subversion (Goodfellow et al., 2014; Carlini & Wagner, 2017). 

However, this is still seen as a kind of technical edge case in cybersecurity management 

literature, despite such risks being practically relevant and material. This structural gap in the 

management literature precludes development of coordinated mitigation approaches that can 

holistically integrate all program-level risks (technical, ethical, and regulatory) into a unified 

threat intelligence and control matrix. 

7.3 Discussion of the study’s relevance for critical infrastructure 

operators and policymakers 

The critical infrastructure cybersecurity operators, in light of the above analysis, should bear in 

mind that AI-centric cybersecurity is much more than just technical systems in use. It is also a 

software development project (training) phase, a risk management practice (operations), and an 
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ethical and regulatory decision (deployment). The practical implications for critical infrastructure 

operators is therefore that they should pay special attention to the interdependencies between 

robustness, ethics and compliance and address them explicitly across the AI system lifecycle. 

The same issue, but in reverse, is faced by policymakers. The available regulation and standards 

provide general, high-level guidance on data security and privacy, ethical risk, and risk 

management practice, but few operational details are given on managing adversarial resilience, 

explainability, and even lifecycle risks associated with AI models used in critical infrastructure 

protection (Regulation, 2016; Cybersecurity, 2018). As such, the standards and regulations may 

need to evolve to take AI-specific risks into consideration, while still leaving room for 

innovation and not constraining operations or commercial value. 

Overall, the argument developed here is that a comprehensive understanding and management of 

AI-centric cybersecurity programs for critical infrastructure needs to work across technical, 

ethical and regulatory dimensions, and across all stages of an AI system’s lifecycle. Addressing 

the above-identified gaps and their implications will be critical for continuing to build trust, 

resilience, and compliance in the future as AI continues to play an increasingly important role in 

critical infrastructure protection. 

8. Conclusion and Future Research Directions 

8.1 Main Results  

The study explores ethical and regulatory implications of program management of AI-centric 

cybersecurity systems in critical infrastructure. The results corroborate the premise that AI can 

enhance cybersecurity program effectiveness by providing advanced intrusion detection, 

anomaly identification, and adaptive response capabilities. Existing research has shown that ML-

based approaches can outperform rule-based systems in managing complex and high-volume 

data streams, especially in cyber-physical and industrial control system (ICS) environments 

(Buczak & Guven, 2015; Khraisat et al., 2019; Humayed et al., 2017). These capabilities are 

particularly relevant to critical infrastructure systems, which often have high availability, safety, 

and reliability requirements (Knowles et al., 2015; Stouffer et al., 2011). 

On the other hand, the research indicates that incorporating AI into cybersecurity programs can 

significantly increase ethical and regulatory risk. AI-based security systems can be subject to 

various forms of adversarial attacks, such as data poisoning, evasion, and model extraction, 

which can compromise detection accuracy and system reliability (Dalvi et al., 2004; Barreno et 

al., 2006; Biggio & Roli, 2018). In addition, adversarial examples can persist and evade defenses 

over time, posing a challenge to the robustness of learning-based security mechanisms in 

adversarial settings (Goodfellow et al., 2014; Carlini & Wagner, 2017). 
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Model opacity is another fundamental issue that remains unresolved. The lack of transparency 

and interpretability of black-box decision-making processes can limit accountability and 

explainability and make it difficult to meet regulatory expectations in safety-critical domains 

(Sommer & Paxson, 2010; Guidotti et al., 2018). The ethical concerns of trust, oversight, and 

responsibility associated with AI-based cybersecurity systems are exacerbated in cases where 

automated responses can have a direct impact on the delivery of critical services or public safety 

(Floridi et al., 2018; Jobin et al., 2019). 

8.2 Recommendations for Practice and Policy  

The study points to the need for holistic, program-level governance approaches to manage the 

ethical and regulatory dimensions of AI-driven cybersecurity programs in critical infrastructure. 

AI should not be viewed as an isolated technical asset but as a long-term program component 

integrated into an organization’s risk management, compliance, and oversight processes 

(Knowles et al., 2015). Cybersecurity managers and operators should consider lifecycle 

governance of AI models, including training, deployment, monitoring, and retirement, with a 

focus on adversarial risk management and regulatory compliance (Papernot et al., 2018). 

From a policy perspective, the research suggests that AI-driven cybersecurity program operations 

should be aligned with existing regulatory and standards-based frameworks. While cybersecurity 

guidance such as the NIST Cybersecurity Framework and industrial control system security 

recommendations provide a foundation for risk management, additional provisions may be 

needed to address the unique challenges and risks of AI-based systems (Cybersecurity, 2018; 

Stouffer et al., 2011). Regulators and policymakers can play an important role in incentivizing 

governance approaches that effectively integrate ethical AI principles with cybersecurity-specific 

compliance needs, especially in highly regulated domains with strict data protection and safety 

requirements (Regulation, 2016). 

In particular, explainability and documentation should be leveraged to enhance ethical and 

regulatory compliance of AI-centric cybersecurity systems. Explainability techniques can help 

increase user and operator trust and provide a basis for accountability in regulated environments 

(Ribeiro et al., 2016; Guidotti et al., 2018). Documentation and model cards provide a useful 

mechanism for communicating model purpose, capabilities, limitations, and ethical 

considerations and supporting the responsible deployment and auditability of AI in cybersecurity 

programs (Mitchell et al., 2019). 

8.3 Directions for Future Research  

Future work should focus on the empirical validation of responsible AI governance frameworks 

in operational cybersecurity programs in critical infrastructure environments. While much of the 

current discourse on ethical and responsible AI is conceptual and normative, there is limited 

evidence of how such principles and frameworks apply to and perform in real-world 
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cybersecurity settings, which are often characterized by complex adversarial dynamics and 

regulatory constraints (Floridi et al., 2018; Jobin et al., 2019). Experimental studies, as well as 

case-based evaluations, can help provide insight into the operational impact of governance 

mechanisms on security performance, ethical compliance, and organizational decision-making. 

Longitudinal studies are another important area for future research. AI-centric cybersecurity 

programs are not static; they evolve as models adapt to new data and as threat actors and 

defenders modify their behaviors and strategies. Long-term studies can shed light on how ethical 

and regulatory risks develop and change over time, especially in AI systems that continuously 

learn and update their models (Papernot et al., 2018; Biggio & Roli, 2018). This can inform the 

design of governance strategies that can adapt to shifting risk landscapes. 

Finally, more work is needed to establish standardized evaluation metrics that can jointly assess 

AI-centric cybersecurity programs on multiple dimensions, including cybersecurity 

effectiveness, adversarial robustness, explainability, and regulatory compliance. The 

development and validation of unified evaluation frameworks will be critical to enabling 

consistent benchmarking of different AI-based cybersecurity programs and supporting evidence-

based decisions by policymakers, regulators, and cybersecurity program managers. 
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