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Abstract

Acrtificial intelligence (Al) has become a prevalent feature of modern cybersecurity programs for
critical infrastructure systems such as those used in energy, transportation, healthcare, and
industrial control systems. Al-based security solutions can provide more accurate detection,
adaptive response, and scalability than traditional rule-based systems. However, the use of these
systems in safety-critical and highly regulated sectors of the economy raises significant ethical
and regulatory issues which present additional challenges to their effective management. These
include risks of adversarial machine learning, explainability limitations of complex models,
accountability gaps for autonomous decisions, and the challenge of meeting regulatory
requirements for cybersecurity practices and data privacy in Al-driven operations.

This paper presents a thorough, literature-based exploration of the ethical and regulatory
challenges of program management for Al-focused cybersecurity programs for critical
infrastructure. Building on existing research in areas such as adversarial machine learning,
ethical Al, and cybersecurity for critical infrastructure, this work takes a program-level
perspective to understand how technical, ethical, and regulatory risks manifest and intersect at
various stages of the Al lifecycle. By reviewing existing frameworks, standards, and principles in
these areas, this study identifies the structural limitations of traditional cybersecurity program
governance frameworks when applied to Al-based solutions.

By conceptually organizing these issues along several dimensions of responsible Al - namely
robustness, transparency, accountability, and regulatory compliance - this study aims to provide
an analytically coherent foundation to understand responsible Al in the context of critical
infrastructure cybersecurity. The insights presented highlight opportunities for holistic
governance approaches that balance innovation, ethics, and legal considerations, while
supporting sustainable, long-term trust in Al-enabled cybersecurity solutions.
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1. Introduction

1.1 Context: Al in Cybersecurity for Critical Infrastructure

Industrial sectors, critical infrastructure, and enterprises increasingly rely on networked
computers and automated systems to ensure their reliability, efficiency, and availability to the
customers. As these digitalized assets continue to grow in size and complexity, their operational
activities generate petabytes of network traffic, sensor data, and execution logs per day, creating
an information volume that can overwhelm traditional security monitoring tools. To bridge this
gap, cybersecurity programs increasingly adopt artificial intelligence to enhance detection,
analysis, automation, and orchestration. Machine learning (ML) models, a primary branch of Al,
are in particular ubiquitously leveraged to enable, e.g., intrusion detection, anomaly detection,
malware classification, or behavior analysis, as they can learn complex representations that are
hard to capture with rule-based techniques (Buczak & Guven, 2015; Khraisat et al., 2019). The
integration of Al has been especially prevalent in the field of securing industrial control systems
and cyber-physical systems in general. This is due to the fact that protecting systems like
supervisory control and data acquisition systems, smart grids, or automated manufacturing from
cybersecurity incidents is a prerequisite for ensuring that no cascading effects or physical
damages result from those incidents. Furthermore, these applications differ from “standard”
enterprise IT systems due to stricter availability requirements, legacy systems, or safety-critical
operations. It has been shown in prior work that ML methods are capable of detecting anomalies
that are too subtle to be discerned by humans or that do not match common attack scenarios, yet
still indicate an attacker having potentially compromised or changed the behavior of an industrial
system (Knowles et al., 2015; Humayed et al., 2017).

At the same time, the increasing adoption of Al for cybersecurity also exposes key
vulnerabilities in the previous state of affairs, which was mainly based on hard-coded security
rules and signatures. The key point is that many traditional detection methods, e.g., signature-
based intrusion detection systems, have largely been built around the assumption of a largely
stable threat model and well-defined attack patterns. In reality, cyber adversaries are much more
dynamic in that their tactics, techniques, and procedures are known to be very heterogeneous and
can adapt in near real-time to different contexts, rendering traditional rules highly ineffective.
Sommer and Paxson (2010) show, e.g., that learning systems operating in the real world need to
address concepts such as concept drift, data imbalance, and adversarial learning, which are not
typically seen in “conventional” information security. This has also been expressed by other
researchers in the sense that probabilistic and adaptive Al/ML systems replace previous rule-
based defenses and deterministic security models (Nguyen et al., 2015).
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1.2 Context: Ethical and Regulatory Concerns of Al in
Cybersecurity

In addition to the limitations of traditional security systems, Al also opens the door for a wide
range of non-technical risks, such as ethical and regulatory risks, which are not captured by
purely functional performance measures, e.g., F1-score, precision, or recall. One prominent
ethical concern of machine learning is its apparent “black box” nature, i.e., that Al models
cannot readily be explained or interpreted by humans. This severely impacts critical
infrastructure settings, as it weakens accountability, reduces human operators’ trust, and hampers
post-breach forensics in safety-critical systems in case of false alarms or, even worse, not raising
the alarm at all (Guidotti et al., 2018). Here, the ethical consideration is not just one of reliability
and explainability in general, but one of the responsibility in contexts where Al systems are
autonomously taking decisions to flag or counter threats, yet the root cause of a false alert cannot
be explained in a transparent way.

Another key issue of Al and ML for cybersecurity is that systems built with these technologies
are inherently vulnerable to so-called adversarial machine learning (AML) attacks, which are
already shown early on in seminal work (Barreno et al., 2006). In brief, these attacks can make
use of intentional poisoning of the training data or can evade detection entirely by exploiting
unknown weaknesses or prediction patterns of the ML model. Following work has shown this
risk to be not only inherent but, also, very actively exploited in security-sensitive applications in
the wild, such as software vulnerability detection, antivirus systems, or malware scanners
(Papernot et al., 2018). Given the safety-critical nature of critical infrastructure and its services,
this too can lead to significant and even potentially existential risks in the form of service
disruptions, physical damage, or harm to human lives.

On the regulatory side, the growing use of Al also places cybersecurity programs for critical
infrastructure in the field of tension of increasingly stringent data protection requirements. As
data protection regulations cover the processing of personal data and, in the EU in particular,
special categories of personal data which are in many cases relevant to security-sensitive
systems, compliance with data protection obligations, such as lawful processing or purpose
limitation, is often highly challenging for Al-centric cybersecurity architectures (Regulation,
2016). The same also applies, to a certain degree, to the cybersecurity regulatory landscape,
where standard-setting and specific regulation typically expect critical infrastructure operators to
adhere to minimum cybersecurity standards and follow risk management, resilience, and
accountability requirements in their operations. While the NIST Cybersecurity Framework, for
example, offers a very structured and comprehensive overview of these topics, it remains
agnostic on many Al-related aspects and thus does not provide holistic guidance for Al-specific
risks and concerns (Cybersecurity, 2018).
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1.3 Scope and Contributions

The purpose of this work is to provide a comprehensive, high-level treatment of ethical and
regulatory challenges that are relevant to Al-centric cybersecurity programs for critical
infrastructure. This is a program- and governance-level framing that views Al-augmented
cybersecurity as a managed organizational capability, which also consists of other organizational
elements than the technology alone. In that sense, it will not focus on the deep technical specifics
of particular AI/ML approaches for security, such as detection models, but will instead
concentrate on ethical, legal, and regulatory topics that impact the adoption, integration, and
operations of Al as a whole within the organization. The general objective of this research is then
to leverage the rich body of existing literature on adversarial ML, ethical Al, and critical
infrastructure cybersecurity to synthesize an integrated analytical perspective on the key
challenges that these domains raise for Al governance.

In order to meet this objective, the paper has three main contributions. First, it surveys existing
research on ethical and adversarial risks, data protection issues, and cybersecurity regulatory
constraints. While much of this research has been conducted independently in each of the three
aforementioned fields, this work provides a framework for understanding and categorizing the
main issues and challenges in the context of critical infrastructure. Second, this paper also
emphasizes the importance of a strong program-level governance for ethically aligned and
legally compliant Al-driven cybersecurity operations. Third, it shows how a principled
integration of well-established cybersecurity standards and ethical Al guidelines can help
organizations practically achieve such responsible and resilient Al adoption in critical
infrastructure contexts.

2. Al-Centric Cybersecurity in Critical Infrastructure
Systems

Artificial intelligence (Al) has become an integral part of cybersecurity operations, augmenting
human analysts in the detection, analysis, and response to cyber threats. In contrast to traditional
security mechanisms, which often rely on manually-defined rules and signatures, Al-based
solutions are data-driven, learning to detect complex attack patterns and previously unseen
threats through exposure to large volumes of network traffic, malware samples, and security
logs. In critical infrastructure settings, where resilience and safety are paramount, such
capabilities are increasingly seen as necessary. However, their adoption also comes with
technical, ethical, and operational risks that need to be managed carefully.

2.1 Machine Learning Techniques for Cyber Defense

Machine learning (ML) techniques are essential for modern cyber defense, underpinning many
intrusion detection and network monitoring systems. Supervised learning techniques are based
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on labeled training data that inform the classifier how to discriminate between normal and
malicious behavior. Supervised methods have been employed extensively in intrusion detection
systems, where they are used to detect known attack patterns with high accuracy (Buczak &
Guven, 2015). Popular supervised learning techniques include decision trees, support vector
machines, and neural networks. They can process large volumes of network traffic data and learn
to recognize subtle indicators of malicious activity. However, supervised ML models require
representative and labeled training data, which may be difficult to obtain in dynamic threat
environments (Khraisat et al., 2019).

Unsupervised learning methods are particularly well-suited to anomaly detection in
cybersecurity, as they do not require labeled data to identify suspicious activity. Clustering,
density estimation, and autoencoders are some of the common unsupervised ML approaches for
anomaly detection in network data. They are used to construct a model of normal behavior and to
detect deviations, which are flagged as anomalies for further investigation. Unsupervised
learning is valuable in critical infrastructure contexts, where novel or targeted attacks may not
have signatures or are difficult to label (Buczak & Guven, 2015). However, since there are no
explicit labels, unsupervised methods may have higher false positive rates, which could
overwhelm analysts and impede operations.

Predictive analytics is another important machine learning application in cybersecurity. By
leveraging historical incident data, system logs, threat intelligence feeds, and other sources of
information, predictive models can forecast future attacks, estimate their likelihood, and identify
high-risk assets. In network monitoring, anomaly detection algorithms are used to discover
deviations from expected traffic patterns, device behavior, and system performance. These
predictive capabilities are especially important in critical infrastructure settings, where networks
are often large-scale and distributed. In such systems, manual monitoring and analysis are
infeasible and delayed detection can lead to catastrophic failures (Khraisat et al., 2019).
However, predictive models raise ethical concerns around transparency and accountability, as
decisions are increasingly based on automated risk assessments.

2.2 Operational Characteristics of Critical Infrastructure

Al-centric cybersecurity solutions must be evaluated in the context of the infrastructure on which
they are deployed. Critical infrastructure environments differ from conventional enterprise IT in
several ways, and those differences have a direct impact on the performance of Al algorithms
and tools. One of the most important features is that control systems and cyber-physical systems
(CPS) often have strict real-time constraints. In industrial control systems (ICS) and CPS,
deterministic response times are often required for safe and stable operation (Stouffer et al.,
2011). Cybersecurity functions that introduce latency or other forms of unpredictable behavior
may interfere with control processes and result in physical damage or safety incidents.
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Safety requirements are another important factor that must be considered when applying Al tools
for critical infrastructure security. In many critical infrastructure sectors, such as energy,
transportation, and healthcare, cybersecurity failures can have direct consequences for human
safety and welfare. In these contexts, cybersecurity decisions must be conservative, preferring
reliability and fail-safe behavior over more aggressive automated responses. This requirement is
often at odds with ML systems, which can change their behavior dynamically in response to new
data and may not behave predictably in adversarial settings. Many critical infrastructure
environments are also characterized by legacy systems that are not designed with cybersecurity
in mind. They may have limited computational capacity, use proprietary or outdated protocols,
and have lifecycles measured in decades (Stouffer et al., 2011). These factors constrain the
application of complex ML models and complicate processes for updating, retraining, and
validating models.

Finally, the cost of failure for cybersecurity in critical infrastructure settings is much higher than
for traditional IT systems. Disruptions or malfunctions in power grids, water systems, and
transportation networks can have cascading effects, resulting in economic losses, environmental
damage, and national security risks. As a result, both the ethical and the security risks of Al-
centric cybersecurity systems are magnified. Model errors, biased training data, or adversarial
manipulation may lead not only to loss of detection performance but also to loss of confidence in
automated decision support. This operational reality means that Al techniques and tools must be
carefully aligned with infrastructure constraints and governance.

Table 1: Al Techniques Used in Critical Infrastructure Cybersecurity and Operational Risks

Al Technique Cybersecurity Infrastructure Ethical and Key References
Function Context Security Risks
Supervised Intrusion Industrial control | Dependence on Buczak & Guven
Learning detection, systems, labeled data, (2015); Khraisat
malware enterprise susceptibility to etal. (2019)
classification networks adversarial
manipulation
Unsupervised Anomaly Cyber-physical High false Buczak & Guven
Learning detection, zero- systems, sensor positives, limited | (2015)
day attack networks explainability
identification
Predictive Threat Large-scale Opacity in risk Khraisat et al.
Analytics forecasting, risk critical scoring, (2019)
prioritization infrastructure accountability
networks challenges
Anomaly Continuous Real-time Latency risks, Stouffer et al.
Detection Models | network and operational model drift over (2011)
system monitoring | environments time
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3. Adversarial Risks and Security Limitations of Al Models

The development of Al-based cybersecurity models has significantly improved accuracy and
automation of Al-supported detection of intrusions, which is particularly complex in large-scale
and high-value settings such as critical infrastructure. Prior work, however, has shown that ML-
based security models operate in the most fundamental adversarial settings and are thus subject
to adversarial risk. Adversaries have a strong incentive to manipulate the learning process and/or
outputs, which then leads to a structural limitation on the security, trustworthiness, and longer-
term effectiveness of Al-centric cybersecurity programs.

3.1 The Nature of Adversarial ML in Cybersecurity

Adversarial machine learning is a process of data, model, or decision boundary manipulation
with the aim to subvert system performance or to be undetected by a system. Dalvi et al. (2004)
were among the first to show that classifiers trained and deployed in adversarial settings are
vulnerable to adversarial manipulation, especially when the attacker has partial knowledge of the
learning process. The cybersecurity setting is unique in this context, as the attacker can
iteratively probe the system and adapt behavior based on system feedback.

Poisoning attacks are some of the most impactful attack types on Al-based cybersecurity models.
The focus of poisoning attacks is the training phase of the learning pipeline, during which an
attacker injects malicious samples to contaminate the training set and poison the resulting model.
Barreno et al. (2006) have shown that even limited poisoning can lead to a significant shift in
decision boundaries which result in systematic misclassification of malicious behavior as normal
behavior. In a critical infrastructure setting, retraining of a model may be partially or fully
automated based on the constant stream of data, meaning a poisoning attack can remain
undetected for a long time and gradually degrade the detection performance of the system.

Evasion attacks, in contrast, are performed during the inference phase of model deployment. In
these attacks, malicious inputs are modified to avoid detection, without changing the intended
goal of the attack. Adversaries craft inputs that are close to the learned decision boundaries of the
classifier. Evasion attacks are especially powerful against models that are static or otherwise
insufficiently monitored, which allow adversaries to pass intrusions undetected by cybersecurity
defenses while maintaining stealth of their operations (Dalvi et al., 2004; Barreno et al., 2006).

Poisoning and evasion attacks, however, are a simplification of the form of adversarial behavior
that is found in real-world cybersecurity settings, as attackers are adaptive. Biggio and Roli
(2018) point out that attackers are constantly changing their tactics in response to new defensive
measures, meaning that there is a continuously changing threat landscape. This adaptive nature
of attack behavior stands in contrast to security assumptions that a model operates against a static
or stationary distribution of data. In practice, attackers may also use a mix of attack types, use

December 2024 www.1jtmh.com 207 | Page



International Journal of Technology Management & Humanities (1IJTMH)
e-1SSN: 2454 — 566X, Volume 10, Issue 4, (December 2024), www.ijtmh.com

feedback to maximize impact, and leverage long-term reconnaissance to better position their
operations, all of which can expose vulnerabilities in Al-based cybersecurity defenses.

3.2 The Reality of Robustness Failures in Al-Based Security Systems

The adversarial vulnerability of Al models is also closely related to the concept of model
robustness. Goodfellow et al. (2014) showed that deep learning models are extremely sensitive to
small, imperceptible, but carefully crafted input perturbations. Adversarial perturbations are
input modifications that lead a classifier to confidently make the wrong prediction, even when
the input data looks legitimate. In the context of cybersecurity systems, this sensitivity can result
in false negatives, delayed reaction times, or reduced situational awareness.

Robustness failures can have a high impact in a critical infrastructure context, as a failure to
correctly classify an input can have physical and societal impact through the control system(s) on
which the cybersecurity system is operating. Deep neural networks, for instance, use high-
dimensional representations of input features, which can amplify small changes to input data and
make them susceptible to adversarial manipulation. Goodfellow et al. (2014) point out that this
vulnerability is not a property of a particular network architecture, but a more general property of
many other linear and non-linear models in use.

The ability to evaluate the robustness of Al models is further limited in adversarial settings.
Carlini and Wagner (2017) have shown that proposed defenses against robustness attacks have
been largely superficial and ineffective under stronger or adaptive attack models. Empirically
evaluating model robustness also remains a difficult task, with the lack of standardized threat
models and evaluation metrics, and a tendency towards security by obscurity. These challenges
limit the generalizability of reported improvements in robustness in the research setting.

Al-based security systems in cybersecurity programs, however, are often only tested under non-
adversarial settings, and therefore suffer from a lack of adversary-aware evaluation. This can
leave a false sense of security where a model is seemingly robust under limited testing, but has
hidden weaknesses that can be exploited in a real-world adversarial context. The lack of widely
accepted protocols for robustness evaluation in security-critical domains also complicates the
effective and transparent use of Al models in terms of trust in automated defenses, regulatory
compliance, and certification.

Figure 1 presents a bar chart illustrating the relative performance degradation of Al-based
cybersecurity systems under different types of adversarial attacks.
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Figure 1: Impact of Adversarial Attacks on Al-Based Cybersecurity Performance

The graph conceptually demonstrates that poisoning attacks typically cause the most severe long-
term degradation by corrupting training processes, while evasion attacks lead to immediate but
often less persistent performance losses. Model inference attacks show moderate degradation by
enabling adversaries to extract system behavior and refine future attacks. This visualization
reinforces the cumulative impact of adversarial threats on Al-centric cybersecurity performance.

4. Ethical Challenges in Al-Centric Cybersecurity Programs

Integrating Al into cybersecurity programs for critical infrastructure introduces a range of ethical
issues that go beyond traditional technical risk management. Al-driven cybersecurity solutions
are playing an increasingly decisive role in high-consequence decisions, such as threat
classification, response, containment, and even system shutdown. In safety-critical and socio-
economically essential critical infrastructure systems, ethical failures can have ripple effects,
jeopardizing public safety, economic stability, and trust in digital systems. The three interrelated
ethical challenge areas discussed in this essay are transparency and explainability, accountability
and human control, and the lack of ethical Al frameworks and documentation.

4.1 Transparency and Explainability

Al-powered cybersecurity systems typically employ sophisticated ML models which function as
black boxes, making security decisions without providing meaningful explanations to the human
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operators. The resulting “black-box” problem is a critical ethical issue in the context of securing
critical infrastructure, as stakeholders such as operators, regulators, and auditors may have the
need or even legal obligation to justify and account for security decisions and system behavior.
For example, prior work has shown that many state-of-the-art ML models are inherently
uninterpretable, and that complex input features like network traffic or system logs cannot be
directly connected to a specific classification (Guidotti et al., 2018).

In a cybersecurity setting, a lack of explainability also limits transparency and accountability as
well as forensic analysis after an incident. When an Al system autonomously identifies a
suspicious event or anomaly or automatically takes a defensive action, the human operators may
be unable to verify whether this decision was based on an actual threat signal or an artifact of
data noise and model bias. The lack of explainability further hinders detection and correction of
errors that occur during adversarial attacks, as the attackers actively probe the system to remain
undetected while manipulating the system into making errors.

Approaches to explainable artificial intelligence (XAI) have been developed to address these
ethical concerns by providing human-understandable explanations of the ML model decisions
after the fact. Explainability methods, such as local surrogate models or feature attributions, seek
to make individual model predictions more interpretable to human stakeholders (Ribeiro et al.,
2016). In an Al-centric cybersecurity program, explainability can help to address some of the
ethical concerns around cybersecurity automation by supporting human validation of the system
decisions by the operators, the regulatory evaluation of the Al solutions, and organizational
justification of automated security decisions. However, explainability methods also come with
tradeoffs between accuracy, fidelity to the original model, computational complexity, and
latency, which must be carefully considered in the high-speed setting of cyber operations.

4.2 Accountability and Human Control

Al-based cybersecurity systems which make high-consequence decisions also raise ethical issues
around human control and accountability. Autonomous cyber defense mechanisms, such as the
automated blocking of network traffic or system isolation in response to a perceived threat, can
cause inadvertent harm if not overseen and controlled by humans. In critical infrastructure
systems, an incorrect automated decision or containment action can interrupt vital services,
introduce safety hazards, or cause cascading failures across infrastructure systems.

Issues around ethical accountability become especially complicated when responsibility is shared
across many actors, such as the data providers, model developers, system integrators, and system
operators. In the absence of clearly defined accountability and governance, it can become
difficult to determine the responsible actor for harmful security actions taken by the Al system.
This is further complicated in the presence of adversaries who may intentionally elicit an
automated response from the system with the goal of disrupting the infrastructure service.
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In the Al ethics literature, many frameworks call for meaningful human control to be a
prerequisite for high-risk Al systems, especially in safety-critical applications (Floridi et al.,
2018). Human-in-the-loop (HITL) system governance mechanisms are one possible approach to
ensure that Al systems are not operating without ethical oversight. HITL approaches typically
involve expert review, escalation paths, and judgment from a human supervisor before an
automated system response is executed. In a cybersecurity program, such human supervision can
provide ethical oversight by allowing the human experts to evaluate the response or containment
plan suggested by the Al system and make the final go/no-go decision, combining the efficiency
of automated processing with human responsibility to avoid uncontrolled automated harm.

4.3 Ethical Al Frameworks and Documentation

Beyond the need for transparency and human control, ethical management of Al-centric
cybersecurity programs also needs to align with ethical Al frameworks and documentation
practices. Ethical principles for responsible Al developed in multiple fields call for a range of
foundational principles, including fairness, accountability, transparency, and respect for human
values (Floridi et al., 2018; Jobin et al., 2019). For example, the IEEE ethical Al principles for
example provide a non-exhaustive list of foundational requirements, many of which apply
directly to ethical cybersecurity, such as “Avoid Algorithmic Bias” or “Respect Privacy.” These
principles are of particular relevance in cybersecurity for critical infrastructure, as security
decisions can impact the whole population of a region or essential services for a nation.

One practical challenge in operationalizing ethical Al principles in cybersecurity programs is the
lack of standardized model documentation practices for Al models. With a lack of standard or
even ad hoc documentation, it is not possible to fully understand and account for model
assumptions, intended use cases, limitations, and known ethical risks of the Al model. A number
of model documentation practices have been suggested to address this need, ranging from
structured reporting templates to good documentation practices (Mitchell et al., 2019). In the
context of cybersecurity programs, model documentation supports ethical due diligence and risk
management by providing operators and stakeholders with essential information about the model
design, training data, performance characteristics, and intended operational use case.

Incorporating ethical Al frameworks and documentation practices into cybersecurity programs
can help ensure that the cybersecurity systems are aligned with ethical Al practices beyond ad
hoc risk management. This also ties ethical responsibility to established program-level
management and regulatory practices.

Figure 2. Ethical Risk Dimensions in Al-Centric Cybersecurity Programs

Figure 2 (Graph): Radar Chart of Ethical Risk Dimensions in Al-Centric Cybersecurity Programs

December 2024 www.1jtmh.com 211 | Page



International Journal of Technology Management & Humanities (1IJTMH)
e-1SSN: 2454 — 566X, Volume 10, Issue 4, (December 2024), www.ijtmh.com

Ethical Risk Dimensions in Al-Centric Cybersecurity Programs
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The radar chart illustrates the relative prominence of ethical risk dimensions in Al-centric
cybersecurity programs for critical infrastructure. Each axis represents a core ethical dimension
identified in prior literature. Higher values indicate greater ethical risk exposure. The
visualization supports comparative analysis of ethical vulnerabilities, highlighting imbalances
between technical robustness and governance-oriented controls such as transparency and human
oversight.

5. Regulatory and Legal Challenges

Regulatory and legal considerations are important to discuss in the context of this paper.
Cybersecurity programs for critical infrastructure have long been subject to a variety of standards
and laws, but Al introduces new dimensions to compliance. Most security tools use data
collection and preconfigured rules, while Al-centric systems often involve real-time data
streams, automated decision-making, and dynamic learning. These elements can interact with
data protection, accountability, transparency, and cybersecurity governance requirements in
complex ways. Ensuring regulatory compliance is therefore an ongoing activity integrated into
Al systems life cycle management.
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5.1 Data Protection and Privacy Regulations

Al-powered cybersecurity systems function through pervasive monitoring, data aggregation, and
real-time analytics. In the context of critical infrastructure, this typically means processing large
volumes of network traffic, system logs, user behavior, and operation telemetry. The scale and
invasiveness of this data processing can lead to privacy concerns and potential violations of data
protection laws, especially when sensitive or personal data is involved. Intrusion detection and
anomaly detection based on machine learning often need access to sensitive data that may
include personally identifiable information, metadata, or even indirectly derivable attributes that
may fall under regulatory purview.

Automated decision-making represents another key regulatory issue. Security systems are
increasingly expected to autonomously classify and respond to perceived threats, often without
human intervention. This could involve automatically blocking access, denying services, or
revoking user privileges. Automated actions like this have to be proportional and limited in
scope, especially when data is processed in ways that users may not have explicitly consented to.
The lack of transparency in many Al models further exacerbates these concerns, as it may be
difficult to understand how a specific data point contributed to an alert or other automated
security decision.

Regulatory requirements based on data protection laws revolve around transparency, data
minimization, accountability, and user rights. Privacy considerations in Al-based cybersecurity
therefore require clear limitations on what data is collected and how it is retained, used, and
shared with other organizations. Data should not be used for secondary purposes that have not
been previously authorized or regulated, and collection and retention policies should be clearly
defined and enforced. The challenge is amplified by the dynamic nature of Al models, where a
learning system may change its behavior over time in ways not initially accounted for during a
compliance assessment.

Auditability and governance requirements are also linked to data protection regulations. It is
necessary to have detailed records that allow security operators to document how data is used,
how models are trained and updated, and how automated decisions are justified. This can be
challenging in critical infrastructure environments where requirements around operational
continuity, system availability, and real-time processing often take priority over other
organizational concerns. Managing privacy and data protection in Al-powered cybersecurity
programs for critical infrastructure therefore requires a coordinated approach that balances legal,
technical, and organizational factors (Regulation, 2016).

5.2 Cybersecurity Standards and Frameworks

Cybersecurity standards and frameworks, which are often a critical part of regulatory
requirements, also play a role in shaping Al adoption. These frameworks and standards often

December 2024 www.1jtmh.com 213 | Page



International Journal of Technology Management & Humanities (1IJTMH)
e-1SSN: 2454 — 566X, Volume 10, Issue 4, (December 2024), www.ijtmh.com

provide structured approaches for implementing risk management in critical infrastructure, but
they were not originally designed with adaptive Al models in mind. This creates a gap in which
Al-specific risks and issues must be understood and then mapped onto existing compliance
frameworks.

The National Institute of Standards and Technology (NIST) Cybersecurity Framework provides
a common risk-based approach to improving cybersecurity for critical infrastructure. It is based
on core functions — identify, protect, detect, respond, and recover — that are relevant to Al-
enabled security operations. However, incorporating Al systems in a NIST-compliant manner
requires additional governance considerations, including model validation, adversarial
robustness, and life cycle considerations. Al-driven detection, for example, may improve the
detect function of the framework, but its use also introduces false positive rates, model drift, and
explainability risks that are not explicitly considered in current frameworks (Cybersecurity,
2018).

Industrial control systems (ICS) have additional regulatory considerations. ICS are often safety-
critical, have longer system life cycles, and have limited resilience to disruption. Regulations and
guidance documents specific to ICS security focus heavily on system availability, deterministic
behavior, and risk containment. As a result, deploying Al-enabled cybersecurity tools in an ICS
environment can raise questions about predictability and control, as well as traditional
certification and compliance expectations. Adaptive Al models may have variable behavior over
time that is at odds with regulatory expectations about system stability and verification in safety-
critical environments (Stouffer et al., 2011).

The main governance challenge in the context of Al and regulation is in reconciling the adaptive
behavior of Al systems with an existing compliance regime that does not necessarily account for
such behavior. This implies extending cybersecurity governance practices to encompass Al-
specific controls, such as model performance monitoring, periodic risk re-evaluation, and
formalized documentation of training datasets and decision logic. Compliance with existing
cybersecurity standards and frameworks will not be meaningful if the additional considerations
around Al systems are not captured.

Table 2. Regulatory and Standards Landscape for Al-Centric Cybersecurity

Regulation or Scope Al Relevance Key Compliance
Standard Challenges

Data Protection Personal data Governs data Ensuring
Regulation (EU) protection and collection, transparency, lawful
2016/679 privacy processing, and processing,

automated decision- | auditability, and
making in Al-based explainability of Al-
security systems driven security
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decisions

NIST Cybersecurity

Critical infrastructure

Provides structure for

Integrating Al

Framework cybersecurity risk Al-enabled detection, | lifecycle governance,
management response, and managing model
recovery functions drift, and addressing
adversarial risks
ICS Security Industrial control Regulates Ensuring
Guidelines system protection cybersecurity in predictability,
safety-critical and stability, and
operational certification of
technology adaptive Al security

environments

mechanisms

Organizational
Cybersecurity
Policies

Enterprise-level
governance and
compliance

Defines internal
oversight for Al
deployment and

Aligning technical Al
controls with legal
and regulatory

monitoring accountability

requirements

6. Program-Level Governance and Management Challenges

The technical aspects of Al implementation in cybersecurity programs for critical infrastructure
must be complemented with program-level governance considerations. Al-driven systems are not
just another technical control; their learning, adaptive, and evolving nature leads to dynamic and
potentially unpredictable behaviors. This evolution presents additional complexity to
governance, risk management, and regulatory compliance efforts, especially in safety-critical or
heavily regulated infrastructure sectors (Knowles et al., 2015).

Program-level governance of Al in cybersecurity encompasses aspects related to the
management of Al systems across their operational lifecycle, from development and deployment
to decommissioning, as well as the identification, assessment, and mitigation of risks specific to
Al technologies. It also includes the ethical and regulatory compliance aspects within the broader
cybersecurity management framework. Neglecting these program-level considerations can lead
to unanticipated and uncontrolled model behaviors, potential non-compliance with regulations,
and increased exposure to systemic risks.

6.1 Al Lifecycle Management

Al-driven cybersecurity solutions have their own lifecycle, which involves data acquisition,
model training, deployment, monitoring, updating, and eventual decommissioning. Many Al
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models, in contrast to conventional security systems, are designed to learn continuously from
new data, which introduces the concept of model drift, where the model’s performance and
decision boundaries change over time. In the adversarial context of cybersecurity, this drift could
also be a result of strategic alteration of input data by an attacker (Barreno et al., 2006; Papernot
etal., 2018).

Continuous model learning poses challenges to governance, as the behavior of the system may
deviate from its originally validated state over time. In the absence of structured lifecycle
management and oversight, Al-based threat detection or response systems may, over time, start
to violate internal security policies, ethical standards, or even legal regulations. This risk is
magnified in critical infrastructure domains, where unforeseen actions by the system could have
serious operational and safety repercussions (Stouffer et al., 2011).

Lifecycle management, thus, becomes critical and must include governance mechanisms for
ongoing model oversight. This goes beyond the initial model testing and validation to include
regular performance audits, controlled update and tuning procedures, and clear ownership for
model changes and updates. Industrial control systems cybersecurity management emphasizes
structured change management, thorough documentation, and clear delineation of responsibilities
and roles, principles that are equally relevant to Al lifecycle governance (Knowles et al., 2015).
Integrating Al system oversight into existing cybersecurity management processes ensures that
Al solutions are subject to the same rigor in terms of risk analysis, approval, and change
management as other critical security controls.

6.2 Risk Management and Regulatory Compliance

Al-enabled cybersecurity programs also have to balance the considerations arising from
operating in adversarial and highly regulated settings. Research in adversarial machine learning
highlights the potential for attackers to deliberately exploit the learning algorithms through
various techniques, including poisoning, evasion, and model inversion, thereby directly
challenging the system’s integrity (Dalvi et al., 2004; Goodfellow et al., 2014; Carlini &
Wagner, 2017). Parallelly, regulatory and compliance mandates dictate that cybersecurity
systems operate in a transparent, lawful, and safe manner, especially when handling personally
identifiable or sensitive data (Regulation, 2016).

Mitigating risks from adversarial attacks and ensuring regulatory compliance are interrelated
governance challenges. Defensive strategies like overly aggressive automated response
mechanisms or non-transparent detection processes can, on the one hand, enhance security
performance against model-attack techniques but may also run counter to principles of
accountability and explainability (Floridi et al., 2018; Guidotti et al., 2018). Papernot et al.
(2018) specifically stress that robust machine learning systems should not be optimized for
security in isolation but must also respect privacy, transparency, and governance considerations.
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Program-level risk management of Al systems, thus, needs to be integrative, combining the
technical security measures with compliance and ethical oversight. Ethical review, legal
compliance verification, and human-in-the-loop processes should be embedded within Al-driven
cybersecurity operations. Automation should not be a replacement for human oversight, more so
in the critical infrastructure domain where the demands for accountability and traceability are
higher. The human-in-the-loop concept needs to balance automated decision-making with safety
and ethical responsibilities, with governance structures explicitly defining acceptable risk levels,
escalation procedures, and mechanisms for regulatory reporting.

Figure 3. Governance Maturity Versus Al-Related Cyber Risk Over Time

Governance Maturity Versus Al-Related Cyber Risk Over Time

3.0 A1

2.5 1

2.0 A

1.5 1

Residual Ethical and Regulatory Risk

0'5 - T T T T
Initial Deployment Managed Integrated Optimized Governance
Program Maturity Level

The line graph illustrates an inverse relationship between cybersecurity program governance
maturity and residual ethical and regulatory risk associated with Al-centric systems. At early
maturity stages, limited oversight, insufficient lifecycle controls, and fragmented compliance
integration result in elevated risk exposure. As governance structures mature through formal
lifecycle management, integrated risk oversight, and regulatory alignment, residual ethical and
regulatory risk declines. The graph emphasizes that technical robustness alone is insufficient and
that sustained risk reduction depends on program-level governance evolution.
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7. Discussion

7.1 How adversarial robustness, ethical governance and regulatory
compliance fit together

The literature reviewed in this project has been synthesized in to a number of key insights. The
primary insight is that adversarial robustness, ethical governance and regulatory compliance are
interwoven, fundamental aspects of Al-centric cybersecurity programs, rather than separate or
siloed areas of concern. Technical evidence from the adversarial machine learning literature has
shown that Al-based cybersecurity systems are subject to evasion, poisoning, and manipulation
attacks that can degrade their detection accuracy and reliability (Dalvi et al., 2004; Barreno et al.,
2006; Biggio & Roli, 2018). These technical vulnerabilities have direct ethical and regulatory
implications when these systems are used in critical infrastructure protection, as false positives or
manipulated decisions can have real-world consequences for safety and society (Stouffer et al.,
2011; Humayed et al., 2017).

Ethical Al governance principles, on the other hand, explicitly call for robustness, explainability,
accountability, and human oversight, among others, as key requirements for trustworthy Al
deployment (Floridi et al., 2018; Jobin et al., 2019). However, the problem of adversarial
fragility in Al models raises challenges to these ethical principles, by demonstrating that
technically insecure models can easily produce misleading, opaque, and unaccountable outputs
(Moramarco et al., 2019; Zisselman, 2019). In other words, adversarial robustness is not just a
technical criterion, but also an ethical imperative for Al systems, because weakly robust systems
could be considered irresponsible or negligent in their protection of critical infrastructures.

The regulatory dimension of cybersecurity further complicates this relationship. The existing
data protection and cybersecurity regulations and standards implicitly assume that the systems in
question function reliably, transparently, and within an acceptable level of risk tolerance
(Regulation, 2016; Cybersecurity, 2018). When Al models used in security settings are
susceptible to adversarial attacks, or simply lack explainability and transparency in their
operations, it becomes very difficult to prove compliance with many accountability, auditability,
and risk management requirements. In this way, the technical robustness, ethical alignment, and
regulatory compliance of Al-based cybersecurity systems are mutually dependent on one
another.

7.2 ldentified structural gaps in Al-specific cybersecurity
management programs

The literature analysis conducted for this project also enabled identification of certain structural
gaps in existing cybersecurity management frameworks for Al-driven systems. These
frameworks were developed based on deterministic systems, static threat models, and rule-based

December 2024 www.1jtmh.com 218 | Page



International Journal of Technology Management & Humanities (1IJTMH)
e-1SSN: 2454 — 566X, Volume 10, Issue 4, (December 2024), www.ijtmh.com

controls (Sommer & Paxson, 2010; Knowles et al., 2015). Al-centric cybersecurity, by contrast,
iIs more adaptive, probabilistic, and subject to continuous model updates and learning, which
means that its security governance needs and challenges may not be fully addressed or
understood by current standards.

The first gap relates to the lifecycle of Al-driven cybersecurity systems. Traditional
cybersecurity frameworks focus on system deployment and runtime monitoring, but leave much
of the continuous learning, model drift, and model retraining under-governed (Papernot et al.,
2018). While the training and operational phases of Al model lifecycle may be well defined, the
processes that occur in between, such as retraining and validation of models, are not as explicitly
governed. This gap in lifecycle management, in turn, leaves room for ethical and regulatory risks
to materialize and accumulate unobserved over time.

The second gap is that of explainability and accountability of decisions. Ethical Al research is by
now familiar with the notions of interpretable and explainable Al, which lay emphasis on making
automated decisions understandable and justifiable (Ribeiro et al., 2016; Guidotti et al., 2018).
However, the current landscape of cybersecurity management practice has few mandates or
expectations of explainability for cybersecurity decisions, be they detection or response in
nature. As such, the gap between research on the ethics of Al explainability and current
cybersecurity governance practice complicates the verification of compliance, incident
investigation and reporting, and stakeholder trust, especially in regulated critical infrastructure
settings.

Finally, and most critically, the issue of adversarial risk management is not sufficiently
integrated at the program level. The existing cybersecurity management frameworks often only
address adversarial risks in passing, or at most as a program-level risk, and not as a coordinated
risk to be integrated with technical, ethical, and regulatory dimensions of a cybersecurity
program. The adversarial machine learning literature abounds with examples of Al models being
susceptible to various attacks or subversion (Goodfellow et al., 2014; Carlini & Wagner, 2017).
However, this is still seen as a kind of technical edge case in cybersecurity management
literature, despite such risks being practically relevant and material. This structural gap in the
management literature precludes development of coordinated mitigation approaches that can
holistically integrate all program-level risks (technical, ethical, and regulatory) into a unified
threat intelligence and control matrix.

7.3 Discussion of the study’s relevance for critical infrastructure
operators and policymakers

The critical infrastructure cybersecurity operators, in light of the above analysis, should bear in
mind that Al-centric cybersecurity is much more than just technical systems in use. It is also a
software development project (training) phase, a risk management practice (operations), and an
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ethical and regulatory decision (deployment). The practical implications for critical infrastructure
operators is therefore that they should pay special attention to the interdependencies between
robustness, ethics and compliance and address them explicitly across the Al system lifecycle.

The same issue, but in reverse, is faced by policymakers. The available regulation and standards
provide general, high-level guidance on data security and privacy, ethical risk, and risk
management practice, but few operational details are given on managing adversarial resilience,
explainability, and even lifecycle risks associated with Al models used in critical infrastructure
protection (Regulation, 2016; Cybersecurity, 2018). As such, the standards and regulations may
need to evolve to take Al-specific risks into consideration, while still leaving room for
innovation and not constraining operations or commercial value.

Overall, the argument developed here is that a comprehensive understanding and management of
Al-centric cybersecurity programs for critical infrastructure needs to work across technical,
ethical and regulatory dimensions, and across all stages of an Al system’s lifecycle. Addressing
the above-identified gaps and their implications will be critical for continuing to build trust,
resilience, and compliance in the future as Al continues to play an increasingly important role in
critical infrastructure protection.

8. Conclusion and Future Research Directions
8.1 Main Results

The study explores ethical and regulatory implications of program management of Al-centric
cybersecurity systems in critical infrastructure. The results corroborate the premise that Al can
enhance cybersecurity program effectiveness by providing advanced intrusion detection,
anomaly identification, and adaptive response capabilities. Existing research has shown that ML-
based approaches can outperform rule-based systems in managing complex and high-volume
data streams, especially in cyber-physical and industrial control system (ICS) environments
(Buczak & Guven, 2015; Khraisat et al., 2019; Humayed et al., 2017). These capabilities are
particularly relevant to critical infrastructure systems, which often have high availability, safety,
and reliability requirements (Knowles et al., 2015; Stouffer et al., 2011).

On the other hand, the research indicates that incorporating Al into cybersecurity programs can
significantly increase ethical and regulatory risk. Al-based security systems can be subject to
various forms of adversarial attacks, such as data poisoning, evasion, and model extraction,
which can compromise detection accuracy and system reliability (Dalvi et al., 2004; Barreno et
al., 2006; Biggio & Roli, 2018). In addition, adversarial examples can persist and evade defenses
over time, posing a challenge to the robustness of learning-based security mechanisms in
adversarial settings (Goodfellow et al., 2014; Carlini & Wagner, 2017).
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Model opacity is another fundamental issue that remains unresolved. The lack of transparency
and interpretability of black-box decision-making processes can limit accountability and
explainability and make it difficult to meet regulatory expectations in safety-critical domains
(Sommer & Paxson, 2010; Guidotti et al., 2018). The ethical concerns of trust, oversight, and
responsibility associated with Al-based cybersecurity systems are exacerbated in cases where
automated responses can have a direct impact on the delivery of critical services or public safety
(Floridi et al., 2018; Jobin et al., 2019).

8.2 Recommendations for Practice and Policy

The study points to the need for holistic, program-level governance approaches to manage the
ethical and regulatory dimensions of Al-driven cybersecurity programs in critical infrastructure.
Al should not be viewed as an isolated technical asset but as a long-term program component
integrated into an organization’s risk management, compliance, and oversight processes
(Knowles et al.,, 2015). Cybersecurity managers and operators should consider lifecycle
governance of Al models, including training, deployment, monitoring, and retirement, with a
focus on adversarial risk management and regulatory compliance (Papernot et al., 2018).

From a policy perspective, the research suggests that Al-driven cybersecurity program operations
should be aligned with existing regulatory and standards-based frameworks. While cybersecurity
guidance such as the NIST Cybersecurity Framework and industrial control system security
recommendations provide a foundation for risk management, additional provisions may be
needed to address the unique challenges and risks of Al-based systems (Cybersecurity, 2018;
Stouffer et al., 2011). Regulators and policymakers can play an important role in incentivizing
governance approaches that effectively integrate ethical Al principles with cybersecurity-specific
compliance needs, especially in highly regulated domains with strict data protection and safety
requirements (Regulation, 2016).

In particular, explainability and documentation should be leveraged to enhance ethical and
regulatory compliance of Al-centric cybersecurity systems. Explainability techniques can help
increase user and operator trust and provide a basis for accountability in regulated environments
(Ribeiro et al., 2016; Guidotti et al., 2018). Documentation and model cards provide a useful
mechanism for communicating model purpose, capabilities, limitations, and ethical
considerations and supporting the responsible deployment and auditability of Al in cybersecurity
programs (Mitchell et al., 2019).

8.3 Directions for Future Research

Future work should focus on the empirical validation of responsible Al governance frameworks
in operational cybersecurity programs in critical infrastructure environments. While much of the
current discourse on ethical and responsible Al is conceptual and normative, there is limited
evidence of how such principles and frameworks apply to and perform in real-world
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cybersecurity settings, which are often characterized by complex adversarial dynamics and
regulatory constraints (Floridi et al., 2018; Jobin et al., 2019). Experimental studies, as well as
case-based evaluations, can help provide insight into the operational impact of governance
mechanisms on security performance, ethical compliance, and organizational decision-making.

Longitudinal studies are another important area for future research. Al-centric cybersecurity
programs are not static; they evolve as models adapt to new data and as threat actors and
defenders modify their behaviors and strategies. Long-term studies can shed light on how ethical
and regulatory risks develop and change over time, especially in Al systems that continuously
learn and update their models (Papernot et al., 2018; Biggio & Roli, 2018). This can inform the
design of governance strategies that can adapt to shifting risk landscapes.

Finally, more work is needed to establish standardized evaluation metrics that can jointly assess
Al-centric cybersecurity programs on multiple dimensions, including cybersecurity
effectiveness, adversarial robustness, explainability, and regulatory compliance. The
development and validation of unified evaluation frameworks will be critical to enabling
consistent benchmarking of different Al-based cybersecurity programs and supporting evidence-
based decisions by policymakers, regulators, and cybersecurity program managers.
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