# Activities, Factors and Formal Technical Reviews on Software Quality Assurance: A Software Testing Strategy

## Author

## Najmul Islam Ansari<sup>1</sup>, Mahesh Kumar Singh<sup>2</sup>

<sup>1</sup>(Research Scholar/Department of CSE/BIET, Lucknow, India) <sup>2</sup>(Professor//Department of CSE/BIET, Lucknow, India)

#### Abstract

To make a Modified Spiral Model using the Software Quality Assurance Activities, Factors, Formal Technical Reviews and Software Testing Strategies and comparison with spiral model make comparative chart .Our goal is to become a cost effective Software Testing and Quality Assurance service provider that help companies deliver reliable and quality software to their clients on time. We hope to achieve this by

- a) Developing a generic test methodology that can be used across projects
- b) Working in conjunction with the development team
- c) Carrying out independent, time bound and priority-driven testing
- *d*) *Freeing the development team from the testing burden thereby allowing them to focus on their core skills*

**Keyword:** *Quality Control, SDLC, Validation, Black-Box Testing, White –Box Testing, Spiral Model, COCOMO, ESTIMACS, SEER-SAM, PUTNAM.* 

#### 1. Introduction

Software Quality Assurance (SQA) as a planned and systematic pattern of all actions necessary to provide adequate confidence that the item or product conforms to established technical requirements'. SQA does this by checking that<sup>[6]</sup>:

- a) Plans are defined according to standards;
- **b**) Procedures are performed according to plans;
- c) Products are implemented according to standards.

#### 2. Development Methodology

Managing The Software Project needs a well-defined Project Management Framework. We, at MAAS InfoSoft follow the top project management practice especially for our offshore software development process. Our state-of the art IT Project Management process is both interactive and open that allows clients to keep track of everything related to his projects including important documents, communication, financial. For our outsourcing clients, we follow the Outsourcing Project Management Process that is transparent and efficient as well. Our effective IT Process management allows them to monitor the whole development process and note any unforeseen problems even from their own end.

Below is our Project Management Framework to give you an insight on our software development methodology.



Fig: 1 : Project Management Framework

**Major Phases of Project Lifecycle** 



#### Fig 2 : Phases of Project Lifecycle

The major phases of project lifecycle are described in the following table:

#### a. Phase Description-

- **i.** Requirement Analysis
- Gather details of requirements from the clients.
- Finalize the User Interface and Flows.

#### 2.1.2. Analysis & Design

- Prepare an Analysis model, comprising of Structural and Dynamic Models of the system.
  - Prepare a Design model, converting from Analysis model.

#### 2.1.3. Implementation

Coding

#### 2.1.4. Testing

• Testing the system

#### 2.1.5. Deployment

• Deploy the system at Client site.



Fig:3 Software Quality Assurance- Formal Technical Review Methods

#### 2.2. Advantages of Spiral model

- High amount of risk analysis hence, avoidance of Risk is enhanced.
- Good for large and mission-critical projects.
- Strong approval and documentation control.
- Additional Functionality can be added at a later date.
- Software is produced early in the SDLC.

#### 2.3. Disadvantages of Spiral model

- Can be a costly model to use.
- Risk analysis requires highly specific expertise.
- Project's success is highly dependent on the risk analysis phase.
- Doesn't work well for smaller projects.

#### 3. Result

Result of Technical Review of spiral model is given below that is outcome of different cost estimation mod el output of estimation taken by applying result at different parameter Extensibility, Flexibility, Traceability and result is compare by different model of SDLC.

|      | Model Name                                    | Author                                                         | Year of<br>Publication | Technique<br>Used                                          | Parameters    |              |              |                                                    |
|------|-----------------------------------------------|----------------------------------------------------------------|------------------------|------------------------------------------------------------|---------------|--------------|--------------|----------------------------------------------------|
| S.No |                                               |                                                                |                        |                                                            | Extensibility | Flexibility  | Traceability | Easy to<br>Implement                               |
| 1    | ESTIMACS                                      | Howard<br>Rubin                                                | 1970                   | Function<br>Point<br>(TA)                                  | V             | $\checkmark$ |              | Being<br>proprietary,<br>accessibilit<br>y is less |
| 2    | PUTNAM's<br>S/W Life<br>Cycle Model<br>(SLIM) | L.H.<br>Putnam,                                                | 1978                   | Ballpark<br>Technique<br>(NAT),<br>Function<br>Point (AT), |               |              | V            | $\checkmark$                                       |
| 3    | COCOMO<br>81[3][4][5][6]                      | Barry<br>Boehm                                                 | 1981                   | SLOC" s,<br>KDSI                                           | $\checkmark$  |              |              | $\checkmark$                                       |
| 4    | SEER-SAM                                      | Galorth                                                        | 1983                   | Top-down,<br>bottom- up                                    | V             | V            | $\checkmark$ | Suitable for<br>SLC over<br>2,00,000               |
| 5    | со <mark>сомо</mark> II                       | USC-CSE &<br>COCOMO II<br>Project<br>Affiliate<br>Organization | 1995                   | Object<br>Point,<br>Function<br>Point,<br>SLOCs,<br>KSLOC  |               | V            | V            | Suitable for<br>large size<br>projects             |

#### 3.1 Result of cost Analysis of Spiral Model

## **3.2 Testing on reliability of Spiral model**

| Model/Feature                      | Waterfall          | Spiral                    | Incremental/<br>Iterative  |
|------------------------------------|--------------------|---------------------------|----------------------------|
|                                    |                    | Not all and Frequently    |                            |
| Specification of All               | Yes                | Changed                   | Not all and Frequently     |
| the Requirements in the            |                    |                           |                            |
| beginning                          |                    |                           | Changed                    |
| Long term project                  | Inappropriate      | Appropriate               | Appropriate                |
| Complex Project                    | Inappropriate      | Appropriate               | Appropriate                |
| Frequently Changed<br>Requirements | Inappropriate      | Appropriate               | Appropriate                |
| Cost                               | Not costly         | Costly                    | Costly                     |
| Cost estimation                    | Easy to estimate   | Difficult                 | Difficult                  |
| flexibility                        | Not                | Less flexible             | Flexible                   |
| Simplicity                         | Simple             | Intermediate              | Intermediate               |
| Supporting high risk projects      | Inappropriate      | Appropriate               | Appropriate                |
| Guarantee of Success               | Less               | High                      | High                       |
| Customer Involvement               | Low                | Low, After Each Iteration | High, After Each Iteration |
| Testing                            | Late               | At the end of each phase  | After every Iteration      |
| Maintenance                        | Least maintainable | Yes                       | Maintainable               |
| Ease of Implementation             | Easy               | Complex                   | Easy                       |

#### 4. Conclusion

Software Quality Assurance (QA) and testing experience with a wide variety of projects and environments. Functionality, compatibility, reliability, exploratory/ad hoc, load/stress, usability, installation, security and related test methodologies. Testing of web application, client-server, network, multimedia, and database, educational and related projects on Windows, Macintosh and Unix/Linux operating systems. Mentor, coordinator and leadership roles in creation and execution of QA and testing processes, test strategies and plans, bug documentation and regression, and bug tracking system development. Experience with both team and individual work. Professional training in software testing theories, procedures and methodologies.

### **References-**

- [1]. Boehm, B: "Software Engineering", IEEE Transactions on computers, vol. C-25, no.12, December 1976.
- [2]. Boehm: "The Hardware / Software Cost Ratio: Is It a Myth?" IEEE COMPUTER, vol.16, no.3, March 1983.
- [3]. IEEE standard glossary of software engineering terminology, IEEE standard 729-1983.
- [4]. Thayer, R, et al.: "Validating Solutions to Major Problems in Software Engineering Project Management, "IEEE COMPUTER, vol. 15, no.8, August.
- [5]. Thayer, R, et al: "Major Issues in Software Engineering Project Management, IEEE TSE, vol.SE-7, no.4, July 981.

