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Abstract 

 

As Kubernetes adoption accelerates in enterprise environments, managing and optimizing cloud 
costs for containerized applications has become increasingly important. This paper presents a 
systematic analysis of cost optimization strategies for Kubernetes workloads across major cloud 
platforms—AWS (EKS), Azure (AKS), and Google Cloud (GKE). We categorize cost drivers into 
compute overprovisioning, underutilized persistent volumes, inefficient autoscaling policies, and 
opaque network egress charges. To evaluate the effectiveness of mitigation techniques, we deploy a 
microservices-based application with variable traffic patterns and apply strategies such as vertical 
pod autoscaling, bin-packing-aware node scheduling, spot instance integration, and request/limit 
calibration. Results show that optimized resource requests and node pool configurations reduce 
compute costs by up to 37%. Additionally, using preemptible instances for stateless services and 
implementing custom metrics for autoscalers yields further savings without compromising 
performance. We also explore open-source cost monitoring tools like Kubecost and Kubevious to 
track real-time expenses and alert on anomalies. Challenges remain in managing multi-cluster 
environments and predicting dynamic traffic patterns. This paper offers a cost-aware deployment 
framework for DevOps teams and provides a decision matrix for balancing availability, resilience, 
and budget constraints. Our recommendations support sustainable cloud adoption in production 
Kubernetes environments. 

 

 

 

1. Introduction 

 
Kubernetes has become the de facto standard for container orchestration in cloud-native 

environments due to its scalability, modularity, and portability. While Kubernetes abstracts much 

of the infrastructure complexity, it introduces a new layer of operational and financial overhead—

particularly in resource provisioning, autoscaling, and observability. As organizations migrate 

production workloads to Amazon EKS, Azure AKS, and Google GKE, cloud expenditures can 

escalate rapidly due to misconfigured workloads and unoptimized resource allocation. 

Unlike traditional VMs, Kubernetes workloads involve dynamic scheduling of pods, persistent 

volumes, node pools, and autoscalers. Each of these elements can contribute to inefficiency and 

wasted cost if left unmonitored. Without proper visibility into usage patterns and request/limit 

calibration, teams often overprovision resources, run idle services, or fail to exploit cost-saving 

options like spot instances and custom metrics for autoscaling. 

This paper presents a comprehensive study of cost optimization strategies for Kubernetes-based 

applications, grounded in real-world deployments and performance benchmarks. We categorize key 

cost drivers and evaluate practical mitigation techniques across cloud platforms. Our goal is to 
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enable DevOps and FinOps teams to strike a sustainable balance between cost, performance, and 

resilience in containerized environments. 

 

 

2. Problem Definition 

 

Despite Kubernetes’ operational flexibility, its default scheduling and autoscaling behavior often 

leads to resource inefficiencies: 

 

• Overprovisioned Requests: Developers set conservative CPU/memory requests, resulting 

in inflated node usage. 

• Static Node Pools: Lack of bin-packing awareness causes underutilized nodes. 

• Inefficient Autoscaling: Horizontal Pod Autoscalers (HPAs) based on CPU thresholds fail 

to respond to real user demand patterns. 

• Opaque Cost Attribution: Costs spread across namespaces and shared services make it 

difficult to trace expenditures to teams or applications. 

• Neglected Persistent Volumes: PVs are frequently overprovisioned and underutilized, 

contributing to silent cost drain. 

 

Given the multi-tenant, dynamic nature of Kubernetes clusters, these inefficiencies are exacerbated 

at scale, leading to unexpected cloud billing spikes and difficulty in chargeback or showback 

modeling. 

 

3. Design Objectives 

To address these challenges, we propose a cost-aware Kubernetes optimization framework guided by 

the following objectives: 

 

• Resource Right-Sizing: Automatically calibrate pod CPU/memory requests and limits based 

on observed usage patterns. 

• Dynamic Scheduling: Implement bin-packing node strategies and taint-based prioritization 

to maximize utilization. 

• Autoscaling Enhancement: Improve responsiveness with vertical pod autoscalers (VPA) 

and custom metrics-based HPAs. 

• Cost Monitoring Integration: Visualize cost metrics in real time and alert on inefficiencies 

using tools like Kubecost, Kubevious, and Prometheus. 

• Hybrid Instance Pools: Use a mix of on-demand, spot/preemptible, and reserved instances 

depending on service criticality. 

• Multi-cloud Support: Ensure strategy portability across EKS, AKS, and GKE, accounting 

for platform-specific cost structures. 

This design encourages teams to treat cost as a first-class SRE metric, alongside latency and 

availability, in order to achieve financial sustainability in cloud-native operations 

 

4. System Architecture / Design Process 
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Our prototype environment consists of a microservices-based web application deployed across 

Kubernetes clusters on AWS (EKS), Azure (AKS), and Google Cloud (GKE). The architecture 

incorporates the following components: 

 

 

• Workload Tiers: 

❖ Stateless API pods: Deployed with horizontal pod autoscaling and opportunistic 

spot node scheduling. 

❖ Stateful services (e.g., PostgreSQL, Redis): Pinned to stable node pools using 

affinity/anti-affinity rules. 

❖ Background workers: Configured with vertical pod autoscaling for efficient 

resource adjustment. 

 

• Cost Optimization Tools: 

❖ Kubecost: Installed to monitor real-time namespace- and label-based cost 

breakdown. 

❖ VPA and HPA: Used concurrently to adjust both per-pod resources and replica 

counts. 

❖ Cluster Autoscaler: Configured for aggressive node scale-down on all platforms. 

❖ Preemptible Node Groups: Set for stateless workloads with checkpointing logic. 

 

• Telemetry Stack: 

❖ Prometheus + Grafana for observability 

❖ OpenTelemetry for tracing infrastructure inefficiencies 

❖ Alertmanager for notifying of anomalous spikes in unused capacity 

 

The system undergoes load testing using traffic patterns mimicking business-hour peaks and 

weekend troughs to stress-test autoscaling behavior and node churn. 
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Figure 1. A layered view of the Kubernetes-based cost optimization framework deployed across 

multi-cloud platforms (EKS, AKS, GKE). The design incorporates mixed node pools (on-

demand, spot, reserved) and aligns workload tiers with scaling strategies—stateless services 

with HPA and spot nodes, stateful services with affinity rules, and background workers with 

VPA. Real-time monitoring and cost breakdown are enabled via Kubecost, Prometheus, and 

OpenTelemetry. 

5. Implementation 

We deployed the optimization framework on Kubernetes clusters across three 

major cloud providers: Amazon EKS, Azure AKS, and Google GKE. Each cluster 

hosted the same baseline microservices application consisting of: 

• API Gateways and Frontend UI 

• Database and Redis for stateful persistence 

• Job processing workers and periodic cron tasks 

Key implementation strategies included: 

• Vertical Pod Autoscaler (VPA): Deployed in recommendation mode 

initially to monitor CPU/memory usage, then activated for background 

workers. 

• Horizontal Pod Autoscaler (HPA): Calibrated using both CPU metrics and 

custom Prometheus-based request rate metrics to better reflect business 

traffic. 

• Node Pools: 

❖ Stateless services assigned to spot/preemptible nodes with affinity and 

taint tolerations. 
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❖ Stateful services assigned to reserved on-demand nodes to avoid eviction 

risk. 

• Bin Packing: Applied via resource limit calibration and 

topologySpreadConstraints to increase pod density. 

• Kubecost: Used for cost attribution by namespace and label, anomaly 

detection, and forecasting. 

Each cluster ran for 10 days under simulated business workloads, including weekday 

peaks and off-hours troughs generated by Locust and K6 scripts. 

 

6. Testing and Evaluation 
 

We evaluated cost and performance impacts across several dimensions: 

 

6.1 Compute Utilization 

 

• Baseline average node CPU utilization: ~42% 

• After optimization: ~69%, due to tighter request limits and improved bin-packing 

 

6.2 Cost Savings (per platform) 

 

Platform Baseline Daily Cost Optimized Daily Cost Savings (%) 

AWS (EKS) $112 $71 36.6% 

Azure (AKS) $105 $67 36.2% 

GCP (GKE) $108 $69 36.1% 

 

6.3 Stability and Performance 
 

• 99th percentile response time remained <250 ms across all services. 

• No pod eviction incidents occurred for stateful workloads. 

• Spot node churn was successfully managed using retry policies and rapid scaling. 

6.4 Monitoring Outcomes 

• Kubecost successfully attributed costs down to service and namespace level. 

• Alerts triggered for: 

❖ Unused PVs > 7 days old 

❖ Idle workloads with CPU < 5% for >24 hours 

• Grafana dashboards helped correlate traffic with resource scaling behavior. 

 

7. Results 

 

The implementation showed that applying targeted optimization techniques in 

Kubernetes can yield 30–40% cost savings without degrading system performance or 

reliability. Key outcomes included: 
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• Resource Optimization: Improved node utilization by nearly 65% across 

environments. 

• Auto-scaling Accuracy: Using custom traffic metrics instead of default 

CPU thresholds led to better alignment between load and pod replicas. 

• Cost Visibility: Namespace and label-based attribution allowed teams to 

self-manage and justify spend. 

 

The approach demonstrated strong portability across cloud providers, making it 

suitable for hybrid or multi-cloud DevOps strategies. 

 

However, some challenges persisted: 

• Storage inefficiencies: Detecting and decommissioning orphaned volumes 

required additional scripting. 

• Autoscaler conflicts: In some cases, HPA and VPA overlapped, causing 

oscillations. 

• Multi-cluster visibility: Kubecost lacked a unified dashboard across all 

clusters, requiring per-cluster views. 

 

8. Conclusion 

 
This paper presented a practical framework for cloud cost optimization in Kubernetes 

environments, addressing key cost drivers through architectural and configuration-level changes. 

Our experimental deployment across AWS, Azure, and GCP demonstrated that: 

 

• Right-sizing resource requests and applying bin-packing-aware scheduling significantly 

improves cluster efficiency. 

• Combining HPA, VPA, and preemptible nodes offers flexible scaling while reducing waste. 

• Tools like Kubecost and Prometheus are vital for real-time cost tracking and operational 

transparency. 

 

We recommend organizations adopt cost as a key SRE metric, alongside latency and availability. A 

well-instrumented Kubernetes cluster, backed by observability and guided by platform-aware tuning, 

can achieve sustainable cloud adoption. 

Future work will explore: 

 

• AI-driven autoscaler tuning 

• Cross-cluster federated cost views 

• Edge optimization scenarios with K3s or microK8s 
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